A GEOMETRIC SETTING FOR THE QUANTUM DEFORMATION OF GL_n A. A. BEILINSON, G. LUSZTIG*, AND R. MACPHERSON* Introduction. The usual definition of quantized enveloping algebras (Drinfeld [2], Jimbo [3]) is in terms of generators and relations. A more natural definition for the + part of these algebras has been given by Ringel [8]; in this definition, the algebra has a basis in 1-1 correspondence with the representations of a certain quiver, and the multiplication is also defined in terms of the quiver. In this paper we construct the entire algebra (not only the + part) assuming that we are in type A, using the geometry of relative positions of pairs of flags in infinite dimensional space. Our approach is as follows. We consider the set \mathscr{F} of n-step filtrations of a vector space over a finite field F_q such that each subquotient is of countable dimension and each member of the filtration is in a fixed commensurability class of subspaces. There is a certain group acting naturally on the set of pairs of such filtrations; the orbits may be interpreted as relative positions of pairs of filtrations and they are indexed by $n \times n$ matrices with integer entries, which are ≥ 0 off diagonal. We want to define an algebra structure on the complex vector space with basis given by the orbits, using the well-known procedure in the usual definition of a Hecke algebra. Namely, one would like to take as structure constants the quantities $c_{\emptyset, \emptyset', \emptyset''}$ for three orbits $\emptyset, \emptyset', \emptyset''$, where $c_{\emptyset, \emptyset', \emptyset''}$ is the number of all $f \in \mathscr{F}$ such that $(f_1, f) \in \mathscr{O}$, $(f, f_2) \in \mathscr{O}'$ for a fixed $(f_1, f_2) \in \mathscr{O}''$. Unfortunately, this number may be infinite. We can resolve this difficulty by a limiting procedure: we first define an algebra \mathbf{K}_d using the geometry of pairs of *n*-step filtrations on a *d*-dimensional vector space and then study how its structure constants behave when *d* increases by a multiple of *n*. In the limit we obtain an algebra \mathbf{K} (without unit element) over a ring of Laurent polynomials in an indeterminate v. Taking certain infinite sums in \mathbf{K} we obtain directly the quantized enveloping algebra corresponding to GL_n ; we also obtain a new definition of the finite dimensional algebras considered in [6] in the case where v becomes a root of 1. At the same time we construct an "intersection cohomology basis" (in the spirit of [7]) for the algebra K. This basis is related to the standard basis by a matrix whose entries may involve polynomials with negative coefficients (in contrast to what happened in [7]). The reader is referred to [1] for a more algebraic approach to the quantized enveloping algebra of type A. Received 11 May 1990. ^{*}Supported in part by National Science Foundation grants DMS 8702842, DMS 8803083.