A TAMENESS CRITERION FOR GALOIS REPRESENTATIONS ASSOCIATED TO MODULAR FORMS (MOD p)

BENEDICT H. GROSS

We begin by recalling some results on the 2-dimensional Galois representations which are associated to modular forms (mod p). If $f = \sum a_n q^n$ is a normalized cuspidal eigenform of weight k and character ε for $\Gamma_1(N)$, with coefficients in a finite field E of characteristic p, there is a continuous semi-simple Galois representation

$$\rho_f : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(E)$$

which is characterized as follows. The representation ρ_f is unramified for all primes $l \nmid Np$, and the matrix $\rho_f(\operatorname{Frob}_l)$ has characteristic polynomial $x^2 - a_l x + \varepsilon(l) l^{k-1}$. The representation ρ_f was conjectured to exist by Serre (cf. [S2], [S6]) and its existence was proved by Deligne (cf. [D1] for the case N=1, and [C] for more general levels). When $k \ge 2$ and $a_p \ne 0$, Deligne [D2] also proved that the restriction of ρ_f to a decomposition group at p in $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ has image contained in a Borel subgroup of $\operatorname{GL}_2(E)$. Up to conjugation, this restriction has the form

(0.1)
$$\begin{pmatrix} \chi^{k-1} \cdot \lambda(\varepsilon(p)/a_p) & * \\ 0 & \lambda(a_p) \end{pmatrix}$$

where χ is the character of $Gal(\mathbb{Q}_p/\mathbb{Q}_p)$ giving its action on μ_p and, for any $\alpha \in E^*$, $\lambda(\alpha)$ is the unramified character taking Frob_p to α .

In this paper, we will establish a modular criterion conjectured by Serre [S7, pg. 18] for the representation ρ_f to be tamely ramified at p, or more precisely, for *=0 in (0.1). Assume that f has weight $2 \le k \le p$ and $a_p \ne 0$; when k=p assume further that $a_p^2 \ne \varepsilon(p)$, so the two characters $\chi^{k-1}\lambda(\varepsilon(p)/a_p)$ and $\lambda(a_p)$ are distinct. The criterion says that ρ_f is completely reducible when restricted to $\operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)$ if and only if there is a normalized eigenform $g = \sum b_n q^n$ of weight k' = p + 1 - k and character ε for $\Gamma_1(N)$ over E, whose Fourier coefficients satisfy $n^k b_n = na_n$ for all $n \ge 1$.

The relationship between f and g is symmetric (for example, the relation between Fourier coefficients may be written $nb_n = n^{k'}a_n$), and Serre calls the pair (f, g) of normalized eigenforms "companions". An equivalent formulation of companionship is that the Galois representations ρ_f and ρ_g satisfy: $\rho_f \otimes \chi \simeq \rho_g \otimes \chi^k$. Using this, it is easy to show that the existence of a companion forces ρ_f to be completely

Received October 23, 1989. Revision received February 15, 1990.