THE KERNEL SPECTRAL SEQUENCE OF VANISHING CYCLES

MORIHIKO SAITO* AND STEVEN ZUCKER**

Introduction. Let $f: X \to S$ be a projective morphism of a complex manifold X onto an open disc S, and $X_0 = f^{-1}(0)$. Assume f to be smooth over $S^* := S \setminus \{0\}$ (by restricting S if necessary). Let $\psi_f \mathbb{Q}_X$ denote Deligne's vanishing cycle sheaf complex [D1], for which one has an isomorphism $H^j(X_t, \mathbb{Q}) \simeq H^j(X_0, \psi_f \mathbb{Q}_X)$ for any $t \in S^*$ (noncanonical, depending on the choice of a lifting of t to the universal covering of S^*). We have the (second) spectral sequence

$$(0.1) E_2^{p,q} = H^p(X_0, \mathcal{H}^q \psi_f \mathbb{Q}_X) \Rightarrow H^{p+q}(X_0, \psi_f \mathbb{Q}_X).$$

If X_0 is a divisor with normal crossings, $\mathcal{H}^q \psi_f \mathbb{Q}_X$ is easy to calculate, and Illusie had made the following

- (0.2) Conjecture. If X_0 has normal crossings,
- (i) the spectral sequence (0.1) degenerates at E_3 , and
- (ii) the induced filtration on $H^{j}(X_{t})$ is the kernel filtration, up to a shift.

Here, the kernel (resp. image) filtration is the increasing (resp. decreasing) filtration K (resp. I) defined by $K_k = \text{Ker } N^{k+1}$ (resp. $I^i = \text{Im } N^i$) for $k \ge -1$ (resp. $i \ge 0$) as in [SZ: p. 499], where N is the logarithm of the unipotent part of the monodromy (up to a Tate twist). This conjecture is a generalization of the local invariant cycle theorem [C] (which is the case q = 0), and assertion (i) is (for general reasons) equivalent to the E_2 -degeneration of the spectral sequence

$$(0.3) E_1^{-k,j+k} = H^j(X_0, Gr_k^{\dagger}\psi_f \mathbb{Q}_X) \Rightarrow H^j(X_0, \psi_f \mathbb{Q}_X),$$

where τ is the canonical filtration ([D2: II, (1.4)]). In the normal crossing case, it can be deduced from [St1-2] that the canonical filtration on $\psi_f \mathbb{Q}_X$ coincides with the kernel filtration of its nilpotent endomorphism ν , and (0.2) (ii) was proved in [Z: (8.25)] by using (indirectly) the monodromical property of the weight filtration (see (0.6) below).

In this note, we prove:

(0.4) THEOREM. Let $f: X \to S$ be a proper morphism of an irreducible analytic space X onto an open disc S. Assume there exists a proper bimeromorphic morphism

Received February 9, 1989. Revision received March 17, 1990.

^{*}Supported by NSF Grant DMS-8610730.

^{**} Supported in part by NSF Grant DMS-8800355.