THE KERNEL SPECTRAL SEQUENCE OF VANISHING CYCLES

MORIHIKO SAITO* and STEVEN ZUCKER**

Introduction. Let $f: X \rightarrow S$ be a projective morphism of a complex manifold X onto an open disc S, and $X_{0}=f^{-1}(0)$. Assume f to be smooth over $S^{*}:=S \backslash\{0\}$ (by restricting S if necessary). Let $\psi_{f} \mathbb{Q}_{X}$ denote Deligne's vanishing cycle sheaf complex [D1], for which one has an isomorphism $H^{j}\left(X_{t}, \mathbb{Q}\right) \simeq H^{j}\left(X_{0}, \psi_{f} \mathbb{Q}_{X}\right)$ for any $t \in S^{*}$ (noncanonical, depending on the choice of a lifting of t to the universal covering of S^{*}). We have the (second) spectral sequence

$$
\begin{equation*}
E_{2}^{p, q}=H^{p}\left(X_{0}, \mathscr{H}^{q} \psi_{f} \mathbb{Q}_{X}\right) \Rightarrow H^{p+q}\left(X_{0}, \psi_{f} \mathbb{Q}_{X}\right) . \tag{0.1}
\end{equation*}
$$

If X_{0} is a divisor with normal crossings, $\mathscr{H}^{a} \psi_{f} \mathbb{Q}_{X}$ is easy to calculate, and Illusie had made the following
(0.2) Conjecture. If X_{0} has normal crossings,
(i) the spectral sequence (0.1) degenerates at E_{3}, and
(ii) the induced filtration on $H^{j}\left(X_{t}\right)$ is the kernel filtration, up to a shift.

Here, the kernel (resp. image) filtration is the increasing (resp. decreasing) filtration $K($ resp. $I)$ defined by $K_{k}=\operatorname{Ker} N^{k+1}\left(\right.$ resp. $\left.I^{i}=\operatorname{Im} N^{i}\right)$ for $k \geqslant-1($ resp. $i \geqslant 0)$ as in [SZ: p. 499], where N is the logarithm of the unipotent part of the monodromy (up to a Tate twist). This conjecture is a generalization of the local invariant cycle theorem [C] (which is the case $q=0$), and assertion (i) is (for general reasons) equivalent to the E_{2}-degeneration of the spectral sequence

$$
\begin{equation*}
E_{1}^{-k, j+k}=H^{j}\left(X_{0}, G r_{k}^{\tau} \psi_{f} \mathbb{Q}_{X}\right) \Rightarrow H^{j}\left(X_{0}, \psi_{f} \mathbb{Q}_{X}\right), \tag{0.3}
\end{equation*}
$$

where τ is the canonical filtration ([D2: II, (1.4)]). In the normal crossing case, it can be deduced from [St1-2] that the canonical filtration on $\psi_{f} \mathbb{Q}_{X}$ coincides with the kernel filtration of its nilpotent endomorphism v, and (0.2) (ii) was proved in [Z: (8.25)] by using (indirectly) the monodromical property of the weight filtration (see (0.6) below).
In this note, we prove:
(0.4) Theorem. Let $f: X \rightarrow S$ be a proper morphism of an irreducible analytic space X onto an open disc S. Assume there exists a proper bimeromorphic morphism

[^0]
[^0]: Received February 9, 1989. Revision received March 17, 1990.
 *Supported by NSF Grant DMS-8610730.
 ** Supported in part by NSF Grant DMS-8800355.

