BIFURCATION FROM INFINITY IN A NONLINEAR ELLIPTIC EQUATION INVOLVING THE LIMITING SOBOLEV EXPONENT

OLIVIER REY

1. Introduction. Let Ω be a smooth and bounded domain in \mathbb{R}^3 , and consider the problem

(I)
$$\begin{cases} -\Delta u = u^5 + \mu u^q, u > 0 \quad \text{on } \Omega \\ u = 0 \quad \text{on } \partial \Omega \end{cases}$$

where $q \in [2, 3]$ and $\mu \in \mathbb{R}^*$.

We will prove in this paper two distinct results on the above equation.

(a) The first result concerns the multiplicity of solutions of (I), for μ large. Brézis and Nirenberg have shown in [5] that for $q \in [1, 3]$, there exists $\mu_0 \ge 0$ (which depends on q and Ω) such that for any $\mu \ge \mu_0$ (I) has at least one solution. Moreover, they suggested that the following holds: if $q \in [1, 3[$, there exists some $\mu_0 > 0$ such that for any $\mu > \mu_0$ (I) has at least two solutions. Atkinson and Peletier proved in [1] that this is true when Ω is a ball. The following result provides us with another partial answer to the conjecture:

THEOREM 1. Let Ω be any smooth and bounded domain in \mathbb{R}^3 , of Ljusternik-Schnirelman category p; let $q \in [2, 3]$. For $\mu > 0$ large enough, there are at least p + 1solutions of (I).

(b) The second result concerns a phenomenon of bifurcation which may occur under a continuous deformation of the domain Ω .

Let us recall some facts; if Q is a smooth and bounded domain in \mathbb{R}^N , $N \ge 4$, and (P_{ϵ}) denotes the problem:

$$(P_{\varepsilon}) \qquad \begin{cases} -\Delta u = u^{(N+2)/(N-2)} + \varepsilon u, u > 0 \quad \text{on } Q \\ u = 0 \quad \text{on } \partial Q \end{cases}$$

it has been shown in [6] [7] that there exist branches of solutions u_{ε} , for $\varepsilon > 0$ small enough, which concentrate at distinguished points of Q when ε tends to zero; namely

> $|\nabla u_{\varepsilon}|^2 \xrightarrow{s \to 0} \overline{S} \delta_{x_0}$ in the sense of measures. $u_{\varepsilon}^{2N/(N-2)} \xrightarrow{s \to 0} \overline{S} \delta_{x_0}$ in the sense of measures.

Received November 16, 1989.