GLOBAL EXISTENCE OF SMALL ANALYTIC SOLUTIONS TO NONLINEAR SCHRÖDINGER EQUATIONS

NAKAO HAYASHI

1. Introduction. In this paper we consider the following nonlinear Schrödinger equation in $\mathbb{R}^{n}(n \geqq 2)$:

$$
\begin{align*}
i \partial_{t} u+\frac{1}{2} \Delta u & =F(u, \nabla u, \bar{u}, \overline{\nabla u}), & & (t, x) \in \mathbb{R} \times \mathbb{R}^{n}, \tag{1.1}\\
u(0, x) & =\phi(x), & & x \in \mathbb{R}^{n} . \tag{1.2}
\end{align*}
$$

Here the nonlinear term $F: \mathbb{C} \times \mathbb{C}^{n} \times \mathbb{C} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ is a polynomial of degree 3 satisfying

$$
|F(u, \nabla u, \bar{u}, \overline{\nabla u})| \leq C \cdot(|u|+|\nabla u|)^{3}
$$

and

$$
F(\omega u, \omega \nabla u, \overline{\omega u}, \overline{\omega \nabla u})=\omega F(u, \nabla u, \bar{u}, \overline{\nabla u}),
$$

for any complex number ω with $|\omega|=1$, and ∇ stands for the nabla with respect to x.
Our main purpose in this paper is to discuss the global existence and analyticity of small solutions of (1.1)-(1.2) under a certain analytical condition on ϕ. The proof presented here is based on a modification of the method used in the previous paper [2] in which we only consider the special case $F=|u|^{2} u$. It seems that the method of [2] does not work for (1.1)-(1.2) directly.

We state notations and function spaces used in this paper. In particular we introduce new function spaces which help to make a proof more simple than the previous one [2].

Notation and function spaces. We let $L^{p}\left(\mathbb{R}^{n}\right)=\{f(x) ; f(x)$ is measurable on $\left.\mathbb{R}^{n},\|f\|_{L^{p}}<\infty\right\}$ where $\|f\|_{L^{p}}=\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} d x\right)^{1 / p}$ if $1 \leqq p<\infty$ and $\|f\|_{L^{\infty}}=$ ess.sup $\left\{|f(x)| ; x \in \mathbb{R}^{n}\right\}$ if $p=\infty$, and we let $H^{m, p}\left(\mathbb{R}^{n}\right)=\left\{f(x) \in L^{p}\left(\mathbb{R}^{n}\right) ;\|f\|_{H^{m, p}}=\right.$ $\left.\Sigma_{|\alpha| \leqq m}\left\|\partial_{x}^{\alpha} f\right\|_{L^{p}}<\infty\right\}$, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in(\mathbb{N} \cup\{0\})^{n}$ is a multi-index, $\partial_{x}^{\alpha}=$ $\partial_{x_{1}}^{\alpha_{1}} \ldots \partial_{x_{n}}^{\alpha_{n}}$ and $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$. We denote by \wedge and \mathscr{F}^{-1} the Fourier transform and inverse, respectively. For each $r>0$ we denote by $S(r)$ the strip $\left\{-r<\operatorname{Im} z_{j}<r ; 1 \leqq j \leqq n\right\}$ in \mathbb{C}^{n}. For $x \in \mathbb{R}^{n}$, if a complex-valued function $f(x)$ has an analytic continuation to $S(r)$, then we denote this by the same letter $f(z)$ and if $g(z)$ is an analytic function on $S(r)$, then we denote the restriction of $g(z)$ to the real axis by $g(x)$. We let

$$
A L_{\infty}^{p}(r)=\left\{f(z) ; f(z) \text { is analytic on } S(r),\|f\|_{A L_{\infty}^{p}(r)}<\infty\right\},
$$

[^0]
[^0]: Received November 6, 1989.

