THE THOM CONDITION ALONG A LINE

DAVID B. MASSEY

§0. Introduction. Let $f: (\mathbb{C} \times \mathbb{C}^{n+1}, \mathbb{C} \times \mathbf{0}) \to (\mathbb{C}, \mathbf{0})$ be a polynomial and let Σf denote the set of critical points of the map f. Let \mathbf{p}_i be a sequence of points in $\mathbb{C}^{n+2} - \Sigma f$ such that $\mathbf{p}_i \to \mathbf{0}$ and $T = \lim_{p_i} T_{\mathbf{p}_i} V(f - f(\mathbf{p}_i))$ exists. Then, $\mathbb{C} \times \mathbf{0}$ is said to satisfy the Thom condition [3] (or the a_f condition [13]) at the origin if T necessarily contains $T_{\mathbf{0}}(\mathbb{C} \times \mathbf{0})$.

If f defines a family of isolated singularities, $f_t: (\mathbb{C}^{n+1}, \mathbf{0}) \to (\mathbb{C}, 0)$ then, in [9], Lê and Saito give a numerical criterion which guarantees that $\mathbb{C} \times \mathbf{0}$ satisfies the Thom condition at the origin: if the Milnor number of f_t is constant for all t small, then $\mathbb{C} \times \mathbf{0}$ satisfies the Thom condition at the origin. In [10], we proved the analogous result for families of one-dimensional singularities. Namely, there are two numbers —which we now denote by $\lambda_{f_t}^0$ and $\lambda_{f_t}^1$ —whose constancy for all t small implies that $\mathbb{C} \times \mathbf{0}$ satisfies the Thom condition at the origin.

In this paper, we generalize this result to families of singularities of arbitrary dimension. More precisely, if $s = \dim_0 \Sigma V(f_0)$, then we define a collection of numbers (the Lê numbers [11]), $\lambda_{f_t}^0, \ldots, \lambda_{f_t}^s$, whose constancy for all t small implies that $\mathbb{C} \times \mathbf{0}$ satisfies the Thom condition at the origin. It is important to note that we do this without any further assumptions on how generic the coordinate t must be—that is, the existence and constancy of the Lê numbers implies that the coordinate t (actually, the hyperplane V(t)) is sufficiently generic to reach the desired conclusion. This is crucial if one wishes to study deformations of some particular f_0 .

§1. The Thom Set. We continue with $f: (\mathbb{C} \times \mathbb{C}^{n+1}, \mathbb{C} \times 0) \to (\mathbb{C}, 0)$ a polynomial.

Definition 1.1. The **Thom set of** f at the origin, \mathcal{T}_f , is the set of (n + 1)-planes which occur as limits at the origin of tangent planes to level hypersurfaces of f, i.e., $T \in \mathcal{T}_f$ if and only if there exists a sequence of points \mathbf{p}_i in $\mathbb{C}^{n+2} - \Sigma f$ such that $\mathbf{p}_i \to \mathbf{0}$ and $T = \lim_{\mathbf{p}_i} V(f - f(\mathbf{p}_i))$. Equivalently, \mathcal{T}_f is the fibre over the origin in the Jacobian blow-up of f (see [5]). \mathcal{T}_f is thus a closed algebraic subset of the Grassmanian $G_{n+1}(\mathbb{C}^{n+2})$ = the projective space of (n + 1)-planes in \mathbb{C}^{n+2} .

We define $\mathcal{T}_{f}^{\text{anal}}$ to be the set of (n + 1)-planes which occur as limits at the origin of tangent planes to level hypersurfaces of f as we approach the origin along real analytic paths, i.e., $T \in \mathcal{T}_{f}^{\text{anal}}$ if and only if there exists a real analytic path $\alpha: [0, \varepsilon) \rightarrow$ $\{0\} \cup (\mathbb{C}^{n-2} - \Sigma f)$ such that: $\alpha(u) = 0$ if and only if u = 0, and $T = \lim_{u \to 0} T_{\alpha(u)} \cdot V(f - f(\alpha(u)))$. Clearly, $\mathcal{T}_{f}^{\text{anal}} \subseteq \mathcal{T}_{f}$. In fact,

Received October 17, 1988. Revision received July 31, 1989. The author is a National Science Foundation Postdoctoral Research Fellow supported by grant #DMS-8807216.