BETTI NUMBERS OF HYPERSURFACES AND DEFECTS OF LINEAR SYSTEMS

ALEXANDRU DIMCA

0. Introduction. Let $\mathbf{w}=\left(w_{0}, \ldots, w_{n}\right)$ be a set of integer positive weights and denote by S the polynomial ring $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ graded by the conditions $\operatorname{deg}\left(x_{i}\right)=w_{i}$ for $i=0, \ldots, n$. For any graded object M, let M_{k} denote the homogeneous component of degree k. Let $f \in S_{N}$ be a weighted homogeneous polynomial of degree N with respect to \mathbf{w}.

Let V be the hypersurface defined by $f=0$ in the weighted projective space $\mathbb{P}(\mathbf{w})=\operatorname{Proj} S=\mathbb{C}^{n+1} \backslash\{0\} / \mathbb{C}^{*}$ where the \mathbb{C}^{*}-action on \mathbb{C}^{n+1} is defined by $t \cdot x=$ $\left(t^{w_{0}} x_{0}, \ldots, t^{w_{n}} x_{n}\right)$ for $t \in \mathbb{C}^{*}, x \in \mathbb{C}^{n+1}$. Assume that the singular locus $\Sigma(f)$ of f is 1-dimensional, namely

$$
\Sigma(f)=\left\{x \in \mathbb{C}^{n+1} ; d f(x)=0\right\}=\{0\} \cup\left(\bigcup_{i=1}^{s} \mathbb{C}^{*} a_{i}\right)
$$

for some points $a_{i} \in \mathbb{C}^{n+1}$, one in each irreducible component of $\Sigma(f)$.
Let G_{i} be the isotropy group of a_{i} with respect to the \mathbb{C}^{*}-action and let H_{i} be a small G_{i}-invariant transversal to the orbit $\mathbb{C}^{*} a_{i}$ at the point a_{i}. The isolated hypersurface singularity $\left(Y_{i}, a_{i}\right)=\left(H_{i} \cap f^{-1}(0), a_{i}\right)$ is called the transversal singularity of f along the branch $\overline{\mathbb{C}^{*} a_{i}}$ of the singular locus $\Sigma(f)$. Note that $\left(Y_{i}, a_{i}\right)$ is in fact a G_{i}-invariant singularity.
The hypersurface V is a V-manifold (i.e., has only quotient singularities [8]) at all points, except at the points a_{i} where V has a hyperquotient singularity $\left(Y_{i} / G_{i}, a_{i}\right)$ in the sense of M. Reid [15].

In this paper we discuss an effective procedure to compute the Betti numbers $b_{j}(V)=\operatorname{dim} H^{j}(V)(\mathbb{C}$ coefficients are used throughout) for such a weighted projective hypersurface V. It is known that only $b_{n-1}(V)$ and $b_{n}(V)$ are difficult to compute and that the Euler characteristic $\chi(V)$ can be computed (conjecturally in all, but surely in most of the interesting cases!) by a formula involving only the weights \mathbf{w}, the degree N and some local invariants of the G_{i}-singularities $\left(Y_{i}, a_{i}\right)$ (see [6], Prop. 3.19). Hence it is enough to determinee $b_{n}(V)$.

On the other hand, it was known since the striking example of Zariski involving sextic curves in \mathbb{P}^{2} having six cusps situated (or not) on a conic [25], that $b_{n}(V)$ is a very subtle invariant depending not only on the data listed above for $\chi(V)$ but also on the position of the singularities of V in $\mathbb{P}(\mathbf{w})$.

In the next three special cases the determination of $b_{n}(V)$ has led to beautiful and mysterious (see H. Clemens remark in the middle of p .141 in [2]) relations with the

