PROPAGATION OF GEVREY SINGULARITIES FOR A CLASS OF OPERATORS WITH TRIPLE CHARACTERISTICS, I.

E. BERNARDI and A. BOVE

0. Introduction. It is well known that the Cauchy problem in the C^{∞} category for hyperbolic operators with multiple characteristics is well-posed, only if in general some Levi conditions on the lower order terms are satisfied. For instance, in the case of double characteristics, complete results have been obtained by Ivrii-Petkov [7], Hörmander [3] and Ivrii [6]. On the other hand if one considers the same problem in the Gevrey classes G^{s}, one realizes that Levi conditions on the lower order terms have to be imposed only if the Gevrey index s is greater or equal to a certain critical index, which in this case is equal to 2 . For a very complete description of propagation of G^{s} singularities in case of hyperbolic operators with double characteristics, see B. Lascar [9]. For general hyperbolic operators with multiple characteristics almost nothing is known about the conditions on the lower order terms which guarantee the well-posedness of the Cauchy problem in the C^{∞} category. For general results when s is sufficiently small, however, see Kajitani-Wakabayashi [11]. In this paper our aim has been to prove a propagation result in $G^{s}, 1<s<+\infty$, in the form of a microlocal Holmgren uniqueness theorem, for a class of hyperbolic operators with triple characteristics. We now have three critical indices, $\frac{3}{2}, 2,3$ and here it has been possible to elucidate what kind of Levi conditions are sufficient depending on where s is located, in order to get microlocal uniqueness. We also would like to remark that these conditions are very close to being necessary, see e.g. [1] where this has been proved for a different, but similar class of operators. Let us now introduce notations and state precisely our result: Let $x=\left(x_{0}, x^{\prime}\right) \in \mathbb{R}^{n+1}$, $x^{\prime}=\left(x_{1}, \ldots, x_{n}\right)$ and $(x, \xi) \in \dot{T}^{*} \mathbb{R}^{n+1}$, we shall consider in the following Gevrey symbols of order m, p, i.e., C^{∞} functions such that: $\exists C, A>0$:

$$
\left|D_{x}^{\alpha} D_{\xi}^{\beta} p(x, \xi)\right| \leqslant C A^{|\alpha|+|\beta|}(\alpha!)^{s}(\beta!)^{s}\langle\xi\rangle^{m-|\beta|}
$$

for $x, \xi \in \mathbb{R}^{n+1},\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2}$. Let then be P a pseudodifferential Gevrey s operator, whose Weyl symbol has the form:

$$
\begin{equation*}
p(x, \xi)=p_{m}(x, \xi)+p_{m-1}(x, \xi)+p_{m-2}(x, \xi)+q(x, \xi), \tag{1}
\end{equation*}
$$

where q is a Gevrey s symbol of order $m-3$ and p_{m-j} is positively homogeneous of order $m-j$. Let us now recall that $f \in G^{s}(\Omega), \Omega$ open subset in \mathbb{R}^{n+1}, if $\forall K \subset \subset$

