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CURVES ON GENERIC KUMMER VARIETIES

GIAN PIETRO PIROLA

Introduction. In this paper we deal with curves of small geometric genus on
Kummer varieties. In section 1 we prove a rigidity theorem (see theorem 1). Let C
be a curve of genus g lying in the Kummer variety of a q-dimensional Abelian
variety. Assuming that the Abelian variety is generated by the inverse image of the
curve, theorem 1 states that we have rigidity if g < q 1. The prototype of this
result is the fact that a Kummer surface has a global holomorphic (2, 0) form, so it
cannot be covered by rational curves. The proof relies on an elementary, but very
interesting, lemma of Xiao (cf. [4]). In section 2 we prove a nonexistence theorem
in the hypothesis of generality of the Kummer variety for g < q- 2. Here we
degenerate to Kummer varieties of nonsimple Abelian varieties and use theorem 1.
Section 2 can be seen as a method of transforming a rigidity theorem into a
nonexistence one. The most surprising consequence is the fact that a generic
Abelian variety of dimension > 3 does not contain hyperelliptic curves of any
genus. In section 3 we give some examples. We work over the field of complex
numbers.

Section 1. Let A be an Abelian variety of dimension q > 1, K K(A) the
Kummer variety of A, and let : A K(A) be the quotient map. Let C be a smooth
curve of genus g, and q: C K a nonconstant morphism. We assume that
generates A as a group (this is automatic if A is a simple Abelian variety).
We will say that (C, qg) is rigid if the image in K of any deformation of (C, qg) is

contained in q(C). If q9 is birational onto its image this means that q(C) cannot be
deformed in K as curve of geometric genus g.

TI4EOREM 1. If g < q 1, (C, q) is rigid in K.

Proof. If (C, q) is not rigid there exist data (S, B, p, b, tr) where:
--S is a smooth analytic surface,
mB is a smooth analytic curve,
rap: S B is a proper smooth morphism,
b is a point of B such that p-1 (b) - C,
mtr: S K is a map whose restriction to p-X(b) is the map q, and such that the
image of tr has dimension 2.
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