CURVES ON GENERIC KUMMER VARIETIES

GIAN PIETRO PIROLA

Introduction. In this paper we deal with curves of small geometric genus on Kummer varieties. In section 1 we prove a rigidity theorem (see theorem 1). Let C be a curve of genus g lying in the Kummer variety of a q-dimensional Abelian variety. Assuming that the Abelian variety is generated by the inverse image of the curve, theorem 1 states that we have rigidity if $g<q-1$. The prototype of this result is the fact that a Kummer surface has a global holomorphic (2,0) form, so it cannot be covered by rational curves. The proof relies on an elementary, but very interesting, lemma of Xiao (cf. [4]). In section 2 we prove a nonexistence theorem in the hypothesis of generality of the Kummer variety for $g<q-2$. Here we degenerate to Kummer varieties of nonsimple Abelian varieties and use theorem 1. Section 2 can be seen as a method of transforming a rigidity theorem into a nonexistence one. The most surprising consequence is the fact that a generic Abelian variety of dimension $\geqslant 3$ does not contain hyperelliptic curves of any genus. In section 3 we give some examples. We work over the field of complex numbers.

Section 1. Let A be an Abelian variety of dimension $q>1, K=K(A)$ the Kummer variety of A, and let $\pi: A \rightarrow K(A)$ be the quotient map. Let C be a smooth curve of genus g, and $\varphi: C \rightarrow K$ a nonconstant morphism. We assume that $\pi^{-1}(\varphi(C))$ generates A as a group (this is automatic if A is a simple Abelian variety).

We will say that (C, φ) is rigid if the image in K of any deformation of (C, φ) is contained in $\varphi(C)$. If φ is birational onto its image this means that $\varphi(C)$ cannot be deformed in K as curve of geometric genus g.

Theorem 1. If $g<q-1,(C, \varphi)$ is rigid in K.
Proof. If (C, φ) is not rigid there exist data (S, B, p, b, σ) where:
$-S$ is a smooth analytic surface,
$-B$ is a smooth analytic curve,
$-p: S \rightarrow B$ is a proper smooth morphism,
$-b$ is a point of B such that $p^{-1}(b) \cong C$,
$-\sigma: S \rightarrow K$ is a map whose restriction to $p^{-1}(b)$ is the map φ, and such that the image of σ has dimension 2.

[^0]
[^0]: Received July 27, 1988. Revision received March 17, 1989. This research has been done within the framework of the MPI national project "Geometria Algebrica."

