ON ARTIN'S CONJECTURE AND THE CLASS NUMBER OF CERTAIN CM FIELDS, II

J. HOFFSTEIN AND N. JOCHNOWITZ

0. Introduction. Let K be a CM field and let k be its maximal totally real subfield with $n = [k : \mathbb{Q}]$. For any number field M we let D_M denote the absolute value of the discriminant of M. Then $D_K = D_k^2 f$, where f is the norm of the relative different. The problem of finding an effective lower bound for h_K , the class number of K, is directly related to bounding the distance of a real zero of the zeta function $\zeta_K(s)$ from 1. The first breakthrough in this direction was the Brauer-Siegel theorem, but the class number estimates that follow from it are weak and ineffective.

A major improvement was introduced by Stark [8] and then strengthened by Odlyzko [6] and Hoffstein [1]. In these papers, strong and effective class number bounds were obtained for n > 2, with the restricton that k be normal over Q or attainable by a sequence of normal extensions. However, in the case of general k these results leave a crucial n! in a denominator which has the effect of considerably weakening the final (still effective) class number bound when discriminants are small. In particular, because of this n! the above-mentioned results imply that $h_K \to \infty$ as $n \to \infty$ only if one makes the additional restriction that $D_k > (Cn)^{2n}$ for some sufficiently large C.

As noted above, the case where k is normal is the "best possible case." In this paper and in [2], we work at the other extreme in what is essentially the worst possible case, i.e., the case where k is as "far away" from being normal over \mathbb{Q} as possible. In particular, let \mathscr{S} be the set of all totally real fields k with the property that the Galois group of the Galois closure of k over \mathbb{Q} is S_n , where $n = [k : \mathbb{Q}]$. Then the following theorem is proven by the authors in [2]:

THEOREM. Let $k \in \mathcal{S}$ and let K be any totally complex quadratic extension of k that does not contain an imaginary quadratic field. If β is a real zero of ζ_K/ζ_k , then $1 - \beta > 1/(3n4^n \log(D_k f^{1/n}))$.

The previous theorem essentially replaces the n! in Stark's bound by 4^n , and as a result we can replace the $(Cn)^{2n}$ condition by one involving only C^n . In particular, one has

COROLLARY. Let K, k be as above. For any $\delta > 0$ there exists an effective constant C > 0 such that when $D_k > C^n$, $h_K > (1 + \delta)^n$.

Received December 29, 1987, Revision received March 18, 1989. First author partially supported by MCS 8305527. Second author partially supported by a Science Scholar Fellowship from the Mary Ingraham Bunting Institute, Radcliffe College, under a grant from the Office of Naval Research.