ON ARTIN'S CONJECTURE AND THE CLASS NUMBER OF CERTAIN CM FIELDS, II

J. HOFFSTEIN and N. JOCHNOWITZ

0. Introduction. Let K be a $C M$ field and let k be its maximal totally real subfield with $n=[k: \mathbb{Q}]$. For any number field M we let D_{M} denote the absolute value of the discriminant of M. Then $D_{K}=D_{k}^{2} f$, where f is the norm of the relative different. The problem of finding an effective lower bound for h_{K}, the class number of K, is directly related to bounding the distance of a real zero of the zeta function $\zeta_{K}(s)$ from 1 . The first breakthrough in this direction was the Brauer-Siegel theorem, but the class number estimates that follow from it are weak and ineffective.

A major improvement was introduced by Stark [8] and then strengthened by Odlyzko [6] and Hoffstein [1]. In these papers, strong and effective class number bounds were obtained for $n>2$, with the restricton that k be normal over \mathbb{Q} or attainable by a sequence of normal extensions. However, in the case of general k these results leave a crucial $n!$ in a denominator which has the effect of considerably weakening the final (still effective) class number bound when discriminants are small. In particular, because of this n ! the above-mentioned results imply that $h_{K} \rightarrow \infty$ as $n \rightarrow \infty$ only if one makes the additional restriction that $D_{k}>(C n)^{2 n}$ for some sufficiently large C.

As noted above, the case where k is normal is the "best possible case." In this paper and in [2], we work at the other extreme in what is essentially the worst possible case, i.e., the case where k is as "far away" from being normal over \mathbb{Q} as possible. In particular, let \mathscr{S} be the set of all totally real fields k with the property that the Galois group of the Galois closure of k over \mathbb{Q} is S_{n}, where $n=[k: \mathbb{Q}]$. Then the following theorem is proven by the authors in [2]:

Theorem. Let $k \in \mathscr{S}$ and let K be any totally complex quadratic extension of k that does not contain an imaginary quadratic field. If β is a real zero of ζ_{K} / ζ_{k}, then $1-\beta>1 /\left(3 n 4^{n} \log \left(D_{k} f^{1 / n}\right)\right)$.

The previous theorem essentially replaces the $n!$ in Stark's bound by 4^{n}, and as a result we can replace the $(C n)^{2 n}$ condition by one involving only C^{n}. In particular, one has

Corollary. Let K, k be as above. For any $\delta>0$ there exists an effective constant $C>0$ such that when $D_{k}>C^{n}, h_{K}>(1+\delta)^{n}$.

[^0]
[^0]: Received December 29, 1987, Revision received March 18, 1989. First author partially supported by MCS 8305527. Second author partially supported by a Science Scholar Fellowship from the Mary Ingraham Bunting Institute, Radcliffe College, under a grant from the Office of Naval Research.

