FANNING CURVES OF LAGRANGIAN MANIFOLDS AND GEODESIC FLOWS

SHAHLA AHDOUT

0. Introduction. In this paper we consider curves $\alpha(s)$, -t < s < t, of Lagrangian submanifolds of a symplectic manifold (M, ω) passing through a fixed point \overline{p} and study its local properties near \overline{p} . When a nondegeneracy condition is satisfied, the curve is called *fanning*; in this case, we parametrize the curve by a time-dependent function on $\alpha(0)$ whose Taylor series coefficients in t are symplectic invariants of the curve (Theorem 2.6).

An example of such a curve can be obtained in the cotangent bundle of a Riemannian manifold from the geodesic flow. Using this curve, we prove in Theorem 4.3 that the curvature tensor is a symplectic invariant of the geodesic flow.

The second example of this type of curve is obtained from the billiard ball map on a compact, strictly convex domain in \mathbb{R}^{n+1} . The study of symplectic invariants of this curve is of interest in the inverse obstacle scattering problem (see [7]) and in the inverse spectral problem (see [5]). In this paper, using these invariants, we show that up to a motion on \mathbb{R}^{n+1} , strictly convex hypersurfaces of \mathbb{R}^{n+1} can be locally distinguished by their symplectic invariants (Theorem 5.5). This result increases our hope that the following conjecture of Guillemin and Melrose is true (see [2]):

- (i) Two compact, strictly convex regions in \mathbb{R}^{n+1} with the same Dirichlet spectrum have symplectomorphic billiard ball maps.
- (ii) Two regions with symplectomorphic billiard systems are the same up to a rigid motion of \mathbb{R}^{n+1} .

A brief summary of the contents of this paper follows.

In section 1 we study a curve $\alpha(s)$, -t < s < t, of Lagrangian subspaces of a symplectic vector space (V, ω) . The set $\Lambda(V)$ of Lagrangian subspaces of V is a nonsingular algebraic subvariety of the Grassmann manifold of *n*-planes in V; $sym(\alpha(0))$, the set of symmetric bilinear forms on $\alpha(0) = L_0$, is a local coordinate system of $\Lambda(V)$. If $\alpha(s)$ is parametrized by $b(s) \in sym(L_0)$, then $\alpha(s)$ is said to be fanning if $\dot{b}(0)$ is nondegenerate. In this case, a parametrization for α is given in Theorem 1.3. This also can be realized as a curve in the homogeneous space G/H, where G = SP(V) and $H = \{g \in G : g(L_0) = L_0\}$. Then, using the idea of moving frames, we can obtain the invariants of α (see [1]).

Received October 13, 1988. Revision received March 18, 1989.