ON KOLLÁR'S VANISHING THEOREMS, I

JEROME WILLIAM HOFFMAN

0. Introduction. Recall the classical vanishing theorem:

(0.0) THEOREM. Let X be a projective and nonsingular variety over C and \mathscr{L} an invertible ample sheaf on X. Then $H^q(X, \mathscr{L} \otimes \Omega_X^p) = 0$ whenever $p + q > \dim X = n$

This theorem was proved for p = n by Kodaira in a celebrated paper [18]. The general case was done by Nakano [22] and had been observed independently by Serre. See also [21]. In a remarkable work, Kollár has recently extended Kodaira's theorem in a new direction [20]:

(0.1) THEOREM. Let X be a projective nonsingular algebraic variety over C and $\pi: X \to Y$ a surjective morphism to a reduced variety Y. Then

- (i) for all $i \ge 0$, the sheaves $R^i \pi_* \omega_X$ are torsion-free on Y (here $\omega_X = \Omega_X^n$ is the dualizing sheaf of top-order differential forms), and
- (ii) if \mathscr{L} is an ample invertible sheaf on Y, then, for all $i \ge 0$, $H^{q}(Y, \mathscr{L} \otimes R^{i}\pi_{*}\omega_{X}) = 0$ whenever q > 0.

When X = Y and π = identity, statement (ii) above is none other than Kodaira's theorem. We ask, is there a vanishing theorem of Kollár's type that would simultaneously generalize (0.1.ii) and (0.0)? In other words, is there a vanishing theorem related to the direct images of the Ω_X^p with p < n? The purpose of this paper is to establish such a theorem. In this first part, we do so only under the highly restrictive conditions that both X and Y and the morphism π are smooth.

Our vanishing theorem (1.4) is a statement concerning certain complexes of sheaves on Y. These complexes arise in the construction by Deligne and Zucker of Hodge structures on the Leray factors $H^s(Y, R^t\pi_*C)$, whose construction was extended by Zucker to the case of degenerating coefficients over curves in [26]. We formulate our theorem for an arbitrary variation of Hodge structures over Y. From this viewpoint, our result can be considered a supplement to the investigations of Griffiths concerning global properties of variations of Hodge structures [11]. That Hodge theory should play a central role in vanishing theorems is no surprise. Indeed, the failure of the vanishing theorem to hold in characteristic p > 0 stems from the failure of Hodge theory to hold (in naive form) in positive characteristic. Moreover, the essential equivalence Lefschetz hyperplane theorem \Leftrightarrow classical vanishing theorem, which holds modulo Hodge theory was known for some time (see [19]) but was exploited fully by Ramanujam [24] in his proof of the vanishing theorem.

Received October 22, 1988. Revision received February 7, 1989.