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FILTRATIONS OF B-MODULES

OLIVIER MATHIEU

Introduction. Let k be an algebraically closed field of characteristic zero, let G
be a simply connected semisimple algebraic group, and let B be a Borel subgroup
of G. For every Schubert variety S G/B, let cOS be the union of all codimension-1
Schubert subvarieties of S. For every dominant weight 2, set Fs(2) F(S, (-2)),
and let Rs(2) be the kernel of F(S, (-2)) F(OS, ,.q’(-2)).

Let M be a B-module. One says that M is a stron9 module (has an excellent
filtration in the terminology of [20]) if M has a filtration whose subquotients are
some Fs(2). Similarly, one says that M is a weak module (has a relative Schubert
filtration in the terminology of [26]) if M has a filtration whose subquotients are
some Rs(2). Note that a strong module is automatically a weak module [26].
The goal of this paper is to prove the following two theorems:

THEOREM 1. Let M be a B-module and let 2 be a dominant weioht. Then we have
1. if M is weak, then M (R) k_ is weak;
2. if M is strong, then M (R) k_ is stron9.

THEOREM 2. Let n be an integer, let M1,..., M, be n weak modules, and let 2 be a
weight. Suppose 2 -np is dominant. Then the B-module MI (R)’" (R) M, (R) k_ is strong.

The remaining part of the introduction is divided into two parts. In the first part,
I discuss previous related works. In the second part, I give some details about the
proof of the theorems.

A. On the filtrations of B-modules. The main motivation for the study of weak
and strong filtrations is the study of tensor products of G-modules. Let 2,/ be
dominant weights and L(2), L(#) the simple G-modules with highest weight 2 and
Kostant’s formula gives the multiplicity of the components of L(2) (R) L(/z).
However, it is difficult to use Kostant’s formula to prove that some components

do appear (actually, it is even difficult to prove combinatorially that the multi-
plicities are > 0!). Using theorems and the induction funetor D from B to G, I can
exhibit some concrete subquotients ofL(2) (R) L(#). For example, Theorem 1 implies
immediately the Parthasaraty-Ranga Rao-Varadarajan conjecture, which was
already independently proved by S. Kumar [10] and me [15], [16]. (The SL(n) ease
is due to P. Polo [20]; later, some special eases were proved again by M. MeGovern
[17] and P. Littelman (oral communication).) These applications are given in
section 7.
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