THE NUMBER OF INTEGRAL POINTS ON ARCS AND OVALS

E. BOMBIERI AND J. PILA

1. Introduction. In 1926, Jarnik [4] proved that a strictly convex arc $y=f(x)$ of length ℓ contains at most

$$
3(4 \pi)^{-1 / 3} \ell^{2 / 3}+\mathrm{O}\left(\ell^{1 / 3}\right)
$$

integral lattice points, and that the exponent and constant are best possible.
However, Swinnerton-Dyer [10] showed that the preceding result can be substantially improved if we start with a fixed, C^{3}, strictly convex arc Γ and consider the number of lattice points on $t \Gamma$, the dilation of Γ by a factor $t, t \geqslant 1$. This of course is the same as asking for rational points $(m / N, n / N)$ on Γ as $N \rightarrow \infty$. In fact, Swinnerton-Dyer proves a bound of type

$$
\left|t \Gamma \cap \mathbb{Z}^{2}\right| \leqslant c(\Gamma, \varepsilon) t^{3 / 5+\varepsilon}
$$

for $\varepsilon>0$.
A little later, W. M. Schmidt [8] gave a uniform version of Swinnerton-Dyer's Theorem (with respect to Γ) and generalized it to higher dimensions. Schmidt proved that if $f \in C^{3}([0, N])$ with $|f| \leqslant N$ and $f^{\prime \prime \prime} \neq 0$ in $[0, N]$, then the number of integral points on the curve Γ : $y=f(x)$ does not exceed $c(\varepsilon) N^{3 / 5+\varepsilon}$ for every $\varepsilon>0$, for some $c(\varepsilon)$ independent of f, and conjectured the result with exponent $\frac{1}{2}$. His result and conjecture are actually more precise, but we have stated them in a modified form for the sake of simplicity.

In this paper, we obtain a result which may be considered a first step toward Schmidt's conjecture, namely, that the hypotheses $f \in C^{D}([0, N]),|f| \leqslant N,\left|f^{\prime}\right| \leqslant 1$, $f^{(D)} \neq 0$ in $[0, N]$ imply

$$
\left|\Gamma \cap \mathbb{Z}^{2}\right| \leqslant c\left(\varepsilon_{D}\right) N^{1 / 2+\varepsilon_{D}}
$$

where $\varepsilon_{\boldsymbol{D}} \rightarrow 0$ as $D \rightarrow \infty$. We prove also an independent conjecture of Sarnak [7] that if $f \in C^{\infty}([0,1])$ is strictly convex then

$$
\left|t \Gamma \cap \mathbb{Z}^{2}\right| \leqslant c(f, \varepsilon) t^{1 / 2+\varepsilon}
$$

for every $\varepsilon>0$. In view of the example $f(x)=\sqrt{x}$, the exponent $\frac{1}{2}$ is best

