WIENER'S CRITERION FOR DIVERGENCE FORM PARABOLIC OPERATORS WITH C¹-DINI CONTINUOUS COEFFICIENTS

EUGENE B. FABES, NICOLA GAROFALO, AND ERMANNO LANCONELLI

1. Introduction. A long-standing open problem in parabolic potential theory has been that of the convergence of the solution of the Dirichlet problem to the assigned boundary values. For Laplace operator, such a question was settled by Wiener in his celebrated 1924 paper [W]. In 1982 Evans and Gariepy [EG] were able to extend Wiener's criterion to the heat operator $H = \Delta - D_t$ in \mathbb{R}^{n+1} . Recently, Garofalo and Lanconelli [GL1] have proved Wiener's criterion for a general second-order parabolic operator with C^{∞} coefficients.

In this paper we take up the study started in [GL1]. Our aim is to prove Wiener's criterion for operators similar to those considered in [GL1], but with minimal smoothness assumptions on the coefficients. More specifically, we consider operators in \mathbf{R}^{n+1} of the type

(1.1)
$$L = \operatorname{div}(A(x, t)\nabla_x) - D_t,$$

where $(x, t) \mapsto A(x, t) = (a_{ii}(x, t))$ is a real, symmetric, matrix-valued function on \mathbf{R}^{n+1} such that there exists $\lambda \in (0, 1]$ for which

(1.2)
$$\lambda |\xi|^2 \leq \sum_{i,j=1}^n a_{ij}(x,t)\xi_i\xi_j \leq \lambda^{-1} |\xi|^2$$

for every $(x, t) \in \mathbb{R}^{n+1}$ and every $\xi \in \mathbb{R}^n$. We also assume that the entries of the matrix A are C^1 -Dini continuous. In order to explain what we mean by this, we set some notation. Henceforth in this paper the letters z, ζ , z_0 , ζ_0 will respectively denote the points (x, t), (ξ, τ) , (x_0, t_0) , (ξ_0, τ_0) in \mathbb{R}^{n+1} . Then for $z \in \mathbb{R}^{n+1}$ we let $||z||^2 = |x|^2 + |t|$, where $|x|^2 = \sum_{j=1}^n x_j^2$. We say that the matrix-valued function $z \mapsto A(z)$ is C^1 -Dini continuous if there exists an increasing function $\omega: [0, +\infty) \rightarrow [0, +\infty)$, called the C^1 -Dini modulus of continuity of A, such that

(1.3)
$$\int_0^1 \omega(\delta) \frac{d\delta}{\delta} < +\infty,$$

Received July 11, 1988.