TRACE FORMULA FOR COMPACT $\Gamma \setminus PSL_2(\mathbb{R})$ AND THE EQUIDISTRIBUTION THEORY OF CLOSED GEODESICS

STEVEN ZELDITCH

0. Introduction. Let Γ be a discrete, cocompact subgroup of hyperbolic elements of $G = PSL_2(\mathbb{R})$, and let X_{Γ} be the associated hyperbolic surface $\Gamma \setminus G/K$. The unit (co-) tangent bundle $S^*(X_{\Gamma})$ may then be identified in a familiar way with $\Gamma \setminus G$, and under this identification right translation by $a_t = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$ corresponds to the geodesic flow G^t . Further, conjugacy classes $\{\gamma\}$ of hyperbolic elements determine closed geodesics $\overline{\gamma}$ in $S^*(X_{\Gamma})$ (periodic orbits of G^t). For each closed geodesic $\overline{\gamma}$, let μ_{γ} denote the positive measure on $C(S^*X_{\Gamma})$ defined by $\langle f, d\mu_{\gamma} \rangle = \int_{\overline{\gamma}} f$. Then let $\mu_T = \sum_{L_{\gamma} \leq T} \mu_{\gamma}$, where L_{γ} is the length (or period) of $\overline{\gamma}$; equivalently, γ is conjugate to $a_{L_{\gamma}/2}$. The equidistribution theorem for closed geodesics on X_{Γ} is as follows:

THEOREM (Bowen [B]). For any $f \in C(S^*X_{\Gamma})$, $\lim_{T \to \infty} \frac{\mu_T(f)}{\mu_T(1)} = \frac{1}{\operatorname{vol}(S^*X_{\Gamma})} \times \int_{S^*X_{\Gamma}} f \, d\omega$, where $d\omega$ is Liouville (or Haar) measure.

In other words, periodic geodesics on compact hyperbolic surfaces become equidistributed relative to Haar measure as the period tends to ∞ . (This is *not* the effect of the averaging over all geodesics γ of length $\leq T$; see the remarks at the end of \$0, and \$5.)

Our purpose in this paper is to sharpen Bowen's theorem by giving asymptotic expansions for $\mu_T(f)$ when f is a Casimir eigenfunction of some weight m. We will do this means of Selberg-type trace formulae. The guiding principle is this: Suppose $\sigma_{s,m}$ is an automorphic form of weight m, lying in an irreducible representation $\mathcal{H}(s)$ for G:

$$\begin{cases} \Omega \sigma_{s,m} = (s-1)(s+1)\sigma_{s,m} \\ \frac{1}{i}W_{s,m} = m\sigma_{s,m} \end{cases},$$

where Ω is the Casimir and $W \sim \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ (notation of [L]). Let γ_0 denote the generator of the centralizer Γ_{γ} of γ (corresponding to the primitive geodesic deter-

Received October 21, 1987. Revision received December 12, 1988.