NONEXISTENCE OF HOMOTOPY FORMULA FOR $(0,1)$ FORMS ON HYPERSURFACES IN \mathbb{C}^{3}

ALEXANDER NAGEL AND JEAN PIERRE ROSAY

This note is about the following, vaguely stated problem, which arises in the question of the embeddability of $C R$ structures of hypersurface type of real dimension 5 (cf. [1], [6], [8]):

Given g a $(0,1)$ form defined on a strictly convex hypersurface in \mathbb{C}^{3}, and assuming that $\bar{\delta}_{b} g \neq 0$ but that $\bar{\delta}_{b} g$ is small (in some suitable sense), one attempts to solve approximately, locally, the equation $\bar{\partial}_{b} u=g$.

We observe that this is not possible without some control on g itself. Although this is not conclusive for the applications in view, this is enough to preclude the possibility of a "homotopy formula."

1. Nonexistence of homotopy formula. In \mathbb{C}^{n} homotopy formulas exist for solving $\bar{\partial}_{b}$, locally on strictly convex hypersurfaces, for $(0, q)$ forms of degree q, $1 \leqslant q \leqslant n-3$; cf. [3]. For $(0, n-2)$ forms one can still locally solve the equation $\partial_{b} u=g$ if g is a ∂_{b} closed $(0, n-2)$ form, but the proof given in [3], pp. 89-92, requires a special trick which does not lead to a homotopy formula.

Let us concentrate on the case of $(0,1)$ forms on hypersurfaces in \mathbb{C}^{3}. By a homotopy formula one means a formula of the type

$$
\omega=\bar{\partial}_{b}(P \omega)+Q\left(\bar{\partial}_{b} \omega\right) .
$$

It would have the effect that if ω were a $(0,1)$ form such that $\bar{\partial}_{b} \omega$ was small in some reasonable sense, then one should be able to find a function u such that the difference ($\omega-\partial_{b} u$) was "small" (just set $u=P \omega$).

This goes against the following fact:
Theorem. Let S_{5} be the unit sphere in \mathbb{C}^{3}. Let Σ^{\prime} and Σ be nonempty open subsets of S_{5} such that $\Sigma^{\prime} \subset \Sigma, \bar{\Sigma} \neq S_{5}$. There exists a sequence $\left(g_{j}\right)$ of smooth $(0,1)$ forms defined on Σ such that $\bar{\partial}_{b} g_{j}$ tends to 0 in the \mathscr{C}^{∞} topology, but such that for every smooth function u defined on Σ^{\prime},

$$
\sup _{\Sigma^{\prime}}\left|\bar{\partial}_{b} u-g_{j}\right| \geqslant 1 .
$$

Proof. By using Moebius transformations, we can assume, without loss of generality, that Σ^{\prime} contains the intersection of S_{5} with the complex hyperplane

Received November 12, 1988. Revision received January 21, 1989. Research partly supported by NSF grants 144U442 and DMS 8800610.

