L^p-ESTIMATES ON FUNCTIONS OF THE LAPLACE OPERATOR

MICHAEL E. TAYLOR

0. Introduction. Our goal is to study L^{p} -continuity of certain functions of the Laplace operator on a complete Riemannian manifold with bounded geometry. To be specific, let M be a complete Riemannian manifold of dimension n. We make the following hypotheses on M:

- (0.1)M has injectivity radius $\geq 2\sigma > 0$,
- (0.2)M has C^{∞} bounded geometry.

As is well known, (0.2) implies an exponential bound on the volume growth of balls. We assume a bound of the following form, where $\langle r \rangle^{\mu} = (1 + r^2)^{(1/2)\mu}$:

(0.3)
$$\operatorname{vol} B_n(r) \leq C \langle r \rangle^{\mu} e^{\kappa r}$$

for some $\kappa \ge 0$, for the volume of a ball $B_p(r)$ of radius r centered at a point $p \in M$. For example, (0.3) holds, with $\mu = n$, whenever $\operatorname{Ric}_M \ge -(n-1)\kappa^2$; some refinements of this can be found in §4 of [4]. Let Δ be the Laplace operator on M; we assume

(0.4)
$$\operatorname{spec}(-\Delta) \subset [A, \infty)$$
 on $L^2(M)$

for some $A \ge 0$, and set

(0.5)
$$H = -\Delta - A, \quad L = H^{1/2}.$$

Then, for a continuous function f, f(L) is defined by the spectral theorem. If f is bounded, then f(L) is bounded on $L^2(M)$.

The main result of this paper is a sharp version of a sufficient condition for f(L)to be bounded on $L^{p}(M)$, derived in Theorem 3.4 of [4]. To state the result, we denote

(0.6)
$$\overline{\Omega}_{W} = \{\lambda \in \mathbb{C} : |\mathrm{Im} \ \lambda| \leq W\},\$$

Received September 16, 1988. Revision received December 8, 1988. Research supported by NSF grant DMS85-02475.