TRANSCENDENCE AND DRINFELD MODULES: SEVERAL VARIABLES

JING YU

0. Introduction.

Notations.

- \mathbb{F}_{q} the finite field with q elements, q a power of p
- \mathscr{C} smooth projective geometrically irreducible curve over \mathbb{F}_q
- ∞ a closed point of \mathscr{C} with degree d_{∞}
- k the function field of \mathscr{C} over \mathbb{F}_{q}
- A the ring of functions in k regular on $\mathscr{C} \{\infty\}$
- k_{∞} the completion of k at ∞
- \overline{k}_{∞} the algebraic closure of k_{∞}
- \mathbb{N} the set of nonnegative integers

In this article, we shall extend our previous work in [13]. The central theme is to explore further the analogy between number fields and global function fields, in the direction of transcendence theory, with Drinfeld modules (or, more generally, abelian t-modules) playing the role of abelian varieties.

Let φ_L be a Drinfeld A-module defined over \overline{k} , with associated exponential function $e_L(z)$ and period lattice $L \subset \overline{k}_{\infty}$. Let K_L be the field of multiplications of ϕ_L . We shall prove the following analogue of the qualitative form of Baker's theorem on logarithms of algebraic numbers:

THEOREM 0.1. Let $\alpha_1, \ldots, \alpha_n$ be elements of \overline{k}_{∞} such that $e_L(\alpha_i)$ are in \overline{k} for $i = 1, \ldots, n$. If $\alpha_1, \ldots, \alpha_n$ are linearly independent over K_L , then any linear combination of $\alpha_1, \ldots, \alpha_n$, with coefficients not all zero from the separable closure K_L^s , is transcendental over k.

We shall say an element in \overline{k}_{∞} is transcendental if it is transcendental over k.

We also study the transcendence properties of Hilbert-Blumenthal-Drinfeld modules, based on the algebraic foundation provided by G. Anderson [1]. The Hilbert-Blumenthal-Drinfeld modules are higher-dimensional Drinfeld modules, which are analogues of the Hilbert-Blumenthal abelian varieties, i.e., abelian varieties with sufficiently many real endomorphisms. We shall prove that if a Hilbert-Blumenthal-Drinfeld module is defined over \overline{k} , then its periods have all coordinate components transcendental. This is also parallel to the classical situation; cf. Bertrand [3].

The above-mentioned results are proved by adapting the method of Schneider-Lang-Bertrand-Masser to characteristic p. The main theorem in §2 can be viewed

Received April 25, 1988. Revision received September 21, 1988.