TRANSCENDENCE AND DRINFELD MODULES: SEVERAL VARIABLES

JING YU

0. Introduction.

Notations.

$\mathbb{F}_{q} \quad$ the finite field with q elements, q a power of p
\mathscr{C} smooth projective geometrically irreducible curve over \mathbb{F}_{q}
∞ a closed point of \mathscr{C} with degree d_{∞}
$k \quad$ the function field of \mathscr{C} over \mathbb{F}_{q}
A the ring of functions in k regular on $\mathscr{C}-\{\infty\}$
k_{∞} the completion of k at ∞
\bar{k}_{∞} the algebraic closure of k_{∞}
\mathbb{N} the set of nonnegative integers
In this article, we shall extend our previous work in [13]. The central theme is to explore further the analogy between number fields and global function fields, in the direction of transcendence theory, with Drinfeld modules (or, more generally, abelian t-modules) playing the role of abelian varieties.

Let φ_{L} be a Drinfeld A-module defined over \bar{k}, with associated exponential function $e_{L}(z)$ and period lattice $L \subset \bar{k}_{\infty}$. Let K_{L} be the field of multiplications of ϕ_{L}. We shall prove the following analogue of the qualitative form of Baker's theorem on logarithms of algebraic numbers:

Theorem 0.1. Let $\alpha_{1}, \ldots, \alpha_{n}$ be elements of \bar{k}_{∞} such that $e_{L}\left(\alpha_{i}\right)$ are in \bar{k} for $i=$ $1, \ldots, n$. If $\alpha_{1}, \ldots, \alpha_{n}$ are linearly independent over K_{L}, then any linear combination of $\alpha_{1}, \ldots, \alpha_{n}$, with coefficients not all zero from the separable closure K_{L}^{s}, is transcendental over k.

We shall say an element in \bar{k}_{∞} is transcendental if it is transcendental over k.
We also study the transcendence properties of Hilbert-Blumenthal-Drinfeld modules, based on the algebraic foundation provided by G. Anderson [1]. The Hilbert-Blumenthal-Drinfeld modules are higher-dimensional Drinfeld modules, which are analogues of the Hilbert-Blumenthal abelian varieties, i.e., abelian varieties with sufficiently many real endomorphisms. We shall prove that if a Hilbert-Blumenthal-Drinfeld module is defined over \bar{k}, then its periods have all coordinate components transcendental. This is also parallel to the classical situation; cf. Bertrand [3].

The above-mentioned results are proved by adapting the method of Schneider-Lang-Bertrand-Masser to characteristic p. The main theorem in $\S 2$ can be viewed

Received April 25, 1988. Revision received September 21, 1988.

