FAMILIES OF WEIERSTRASS POINTS

FERNANDO CUKIERMAN

Introduction. Let $\overline{\mathcal{M}}_g$ and $\overline{\mathcal{C}}_g$ be the coarse moduli spaces of stable and pointed stable algebraic curves of genus g over the complex numbers, and $\pi: \overline{\mathcal{C}}_g \to \overline{\mathcal{M}}_g$ the natural map. The \mathbb{Q} -vector space $\operatorname{Pic}(\overline{\mathcal{C}}_g) \otimes \mathbb{Q}$ has a basis

$$\{\omega, \lambda, [\Delta_0], \ldots, [\Delta_{q-1}]\},\$$

where $\omega = \omega_{\pi}$ is the relative dualizing sheaf of π , $\lambda = \pi^*$ det $\pi_* \omega$, and Δ_i are the boundary components of $\overline{\mathscr{C}}_g$. If $\overline{\mathscr{W}} \subset \overline{\mathscr{C}}_g$ is the closure of the locus of Weierstrass points of smooth curves, then $\overline{\mathscr{W}}$ is linearly equivalent to a linear combination $a\omega + b\lambda + \sum c_i [\Delta_i]$.

In section 2 we determine the coefficients $a, b, c_0, \ldots, c_{g-1}$: In a one-parameter family of smooth curves degenerating to a reducible curve with one node, the Wronskian determinant constructed from regular 1-forms vanishes along the components of the central fiber; the essential point of our computation is determining these orders of vanishing.

In section 3 we study some of the geometry of \overline{W} , namely, its singularities and intersection with the boundary of $\overline{\mathscr{C}}_g$. Along the interior \mathscr{C}_g , the divisor W behaves like a generic determinantal variety, at least in the sense that it is irreducible and singular only at points corresponding to Weierstrass points of weight at least two. Also, \overline{W} is generically transverse to Δ_i , for i > 0, but this generic behavior fails along Δ_0 : \overline{W} is singular in codimension one along the locus $N \subset \Delta_0$ of nodes of irreducible curves. The singularity of \overline{W} along N consists of several hypercuspidal branches, coming from singularities of the Hurwitz scheme parametrizing \overline{W} .

Let $\overline{\mathscr{D}} \subset \overline{\mathscr{M}}_g$ (resp. $\overline{\mathscr{E}} \subset \overline{\mathscr{M}}_g$) be the closure of the divisor of smooth curves C possessing a point p such that (g-1)p moves in a pencil (resp. (g+1)p moves in a net). The closure of the locus of smooth curves possessing a Weierstrass point of weight at least two is $\overline{\mathscr{D}} \cup \overline{\mathscr{E}}$, and the divisors $\overline{\mathscr{D}}$ and $\overline{\mathscr{E}}$ then form the branch divisor of $\pi \colon \overline{\mathscr{W}} \to \overline{\mathscr{M}}_g$.

In section 5 we apply to π the Hurwitz's formula of section 4, taking into account the contribution of $\Delta_0 \subset \overline{\mathcal{M}}_g$ due to the singularity of $\overline{\mathcal{W}}$ along N, to obtain a relation among the classes of $\overline{\mathcal{D}}$ and $\overline{\mathcal{E}}$. Combining this with the determination by S. Diaz [D1] of the class of $\overline{\mathcal{D}}$, we obtain a formula for the class of $\overline{\mathcal{E}}$.

The main tools for understanding what happens to Weierstrass points when smooth curves degenerate are the theories of admissible covers [HM] and of limit