NONLOCAL INVERSION FORMULAS FOR THE X-RAY TRANSFORM

ALLAN GREENLEAF AND GUNTHER UHLMANN

§1. Introduction. Consider the problem of reconstructing a function f(x) on \mathbb{R}^n from knowledge of its integrals over k-dimensional planes. Let $M_{k,n}$ be the (k + 1)(n - k)-dimensional bundle of (affine) k-planes in \mathbb{R}^n , and define the k-plane transform

(1.1)
$$\mathscr{R}_{k,n}f(\pi) = \int_{\pi} f(x) d\mu_{\pi}(x), \pi \in M_{k,n},$$

where $d\mu_{\pi}(x)$ is Lebesgue measure on π . When k = n - 1, $\mathscr{R}_{k,n}$ is the classical Radon transform and $\mathscr{R}_{n-1,n}$ is an isomorphism on the appropriate spaces of smooth functions of compact support which extends to a unitary operator [He]. When $1 \leq k < n - 1$, dim $M_{k,n} > \dim \mathbb{R}^n$ and $\mathscr{R}_{k,n}f$ is overdetermined; the range of $\mathscr{R}_{k,n}$ was characterized as the null space of an ultra hyperbolic partial differential operator when k = 1, n = 3 by John [J], and by a system of such operators in general by Gelfand, Graev and Shapiro [GeGrS1]. Because of the overdeterminedness of $\mathscr{R}_{k,n}$, it is natural to ask which *n*-dimensional submanifolds $\mathscr{C} \subset M_{k,n}$ (called *k*-plane complexes) have the property that $\mathscr{R}_{k,n}f|_{\mathscr{C}}$ determines f, and to find inversion formulas giving f(x) in terms of $\mathscr{R}_{k,n}f|_{\mathscr{C}}$. Even for those \mathscr{C} 's for which this is impossible, one can try to reconstruct as much of f as possible. The purpose of this paper is to give a partial solution to this problem in the case k = 1.

Already from the inversion of the full k-plane transform one knows that there is a qualitative difference in the inversion operators that depends on the parity of k. The inversion formula is (see [He])

(1.2)
$$f(x) = C_{k,n}(-\Delta)^{k/2} \mathscr{R}_{k,n}^t \mathscr{R}_{k,n} f(x).$$

When k is even, $(-\Delta)^{k/2}$ is a differential operator and the inversion formula is local; when k is odd, $(-\Delta)^{k/2}$ is a pseudodifferential operator and finding f(x) depends on knowing $\mathscr{R}_{k,n}f(\pi)$ for all $\pi \in M_{k,n}$, and so the inversion formula is nonlocal.

The k-plane transform can also be formulated for the Grassmann bundle $M_{k,n}^{\mathbb{C}}$ of complex k-planes in \mathbb{C}^n , still acting on, say, smooth functions of compact support; since the underlying planes are 2k-dimensional, one can hope for local inversion

Received November 9, 1987. Revision received May 31, 1988. First author supported in part by NSF Grant DMS-8601534. Second author supported in part by NSF Grant DMS-8601118 and an Alfred P. Sloan Research Fellowship.