A DECOMPOSITION THEOREM FOR CERTAIN SELF-DUAL MODULES IN THE CATEGORY \mathcal{O}

DAVID H. COLLINGWOOD AND RONALD S. IRVING

1. Summary. Associated to a complex, semisimple Lie algebra g and a parabolic subalgebra p_S is a category \mathcal{O}_S containing all the generalized Verma modules induced from p_S and all of their composition factors. In this paper, we classify all modules in the category \mathcal{O}_S which are self-dual and have filtrations with generalized Verma modules as successive quotients. A collection of indecomposable modules with these properties is introduced first. It is then proved that any other module with these properties is isomorphic to a direct sum of modules in the collection. This generalizes a theorem proved by Enright and Shelton for certain choices of g and p_S with p_S maximal [2]. Even in the case of the usual category \mathcal{O} , which corresponds to p_S being a Borel subalgebra, our result is new. Results in [2] on bilinear and sesquilinear forms may also be extended to any \mathcal{O}_S , as discussed at the end of the paper.

2. Notation and background. Let us fix a complex, semisimple Lie algebra g, a Cartan subalgebra h, and a Borel subalgebra b containing h. Let R be the root system and \mathcal{W} the Weyl group associated to h. To each $\alpha \in R$ is associated a reflection s_{α} in \mathcal{W} . Let B(R) be the set of simple roots of R corresponding to the choice of b and let $B(\mathcal{W})$ be the corresponding set of simple reflections in \mathcal{W} . Let ρ be the half-sum of the positive roots. Given $w \in \mathcal{W}$ and $\mu \in h^*$, we set $w \cdot \mu = w(\mu + \rho) - \rho$. The space h^* carries the usual partial order, in which the positive elements are the nonnegative, integral, linear combinations of simple roots, besides 0. Set $R_{\mu} = \{\alpha \in R : s_{\alpha} \cdot \mu \text{ and } \mu \text{ are comparable}\}$. Then R_{μ} is a root system, and it has a unique simple basis $B(R_{\mu})$ lying in the set of positive roots of R. Let \mathcal{W}_{μ} be the group generated by the set $B(\mathcal{W}_{\mu})$ of reflections $\{s_{\alpha} : \alpha \in B(R_{\mu})\}$. Recall that μ is regular if $s \cdot \mu \neq \mu$ for all $s \in B(\mathcal{W})$, integral if $R_{\mu} = R$, and dominant if $w \cdot \mu \gg \mu$ for all $w \in \mathcal{W}$.

Associated to the choices of b and h is the category \mathcal{O} , consisting of the finitely generated g-modules which are h-semisimple and b-finite. Given a weight $\mu \in \mathfrak{h}^*$, the Verma module $V(\mu)$ is defined to be the g-module induced from the onedimensional b-module on which h acts via μ . It lies in \mathcal{O} and has a unique simple homomorphic image $L(\mu)$. Projective covers exist in \mathcal{O} ; we denote by $Q(\mu)$ the projective cover of $L(\mu)$. A duality functor δ is also defined on \mathcal{O} . In view of the central role played by δ in this paper, let us recall its definition in detail. Assume a Chevalley basis of g is fixed, with each root space g_{α} spanned by an element x_{α} . With

Received April 21, 1988.