SELF-INTERSECTION 0-CYCLES AND COHERENT SHEAVES ON ARITHMETIC SCHEMES

TAKESHI SAITO

Introduction. In arithmetic geometry, the conductor of the ℓ-adic étale cohomology is one of the most important numerical invariants of an arithmetic scheme. In his recent paper [2] Bloch defined the self-intersection 0-cycle $\left(\Delta_{X}, \Delta_{X}\right)_{S}$ of an arithmetic scheme X relative to a base scheme S, to study the conductor. There he conjectured that its degree is equal to the conductor of X and proved it in relative dimension 1 . On the other hand, Kato conjectured that the conductor is equal to the alternating sum of the Euler-Poincaré characteristics of the torsion parts of the sheaves of relative differentials $\Omega_{X / S}^{\circ}$. The main purpose of this paper is to show that these two conjectures are equivalent. Namely, we prove the equality between the degree of $\left(\Delta_{X}, \Delta_{X}\right)_{S}$ and the alternating sum of the Euler-Poincaré characteristic of the torsion part of $\Omega_{X / S}$.

Let S be the spectrum of a discrete valuation ring with perfect residue field and X be a regular flat proper S-scheme purely of relative dimension r with smooth generic fiber. Then the conductor $\operatorname{Art}(X / S)$ of X over S is defined to be the integer $\chi\left(X_{\bar{\eta}}\right)-\chi\left(X_{\bar{s}}\right)+\operatorname{Sw}_{S} H^{*}\left(X_{\bar{\eta}}, \mathbb{Q}_{\ell}\right)$ (cf. [2], section 0). Here ℓ is a prime invertible on S, s (resp. η) denotes the closed (resp. generic) point of S, and Sw denotes the Swan conductor.

By the definition of Bloch ([2], section 1), the self-intersection 0-cycle ($\left.\Delta_{X}, \Delta_{X}\right)_{S}$ is the localized chern class $(-1)^{r+1} c_{r+1, X_{s}}^{X}\left(\Omega_{X / S}^{1}\right) \in C H_{0}\left(X_{s}\right)$. Then he made the following

Conjecture (Bloch). For X over S as above,

$$
-\operatorname{Art}(X / S)=\operatorname{deg}\left(\Delta_{X}, \Delta_{X}\right)_{S}
$$

On the other hand, the supports of the coherent sheaves $\Omega_{X / S, \text { tors }}$ are contained in the closed fiber X_{s}. For a coherent \mathcal{O}_{X}-module \mathscr{F} whose support is in X_{s}, the Euler-Poincaré characteristic $\chi(X, \mathscr{F})$ denotes the alternating sum of the lengths of the \mathscr{O}_{S}-modules of finite length $H^{q}(X, \mathscr{F})$. Then Kato made the

Conjecture (Kato). For X over S as above,

$$
-\operatorname{Art}(X / S)=\sum_{p=0}^{r+1}(-1)^{p} \chi\left(X, \Omega_{X / S, \text { tors }}\right)
$$

Received October 1, 1987. Revision received November 12, 1987.

