A CHARACTERIZATION OF BALL QUOTIENTS WITH SMOOTH BOUNDARY

HAJIME TSUJI

1. Introduction. In 1977 S.-T. Yau proved that a compact Kähler manifold with the negative or zero first Chern class admits a Kähler-Einstein metric [16] (T. Aubin contributed also to the result in the case of the negative first Chern class ([1]).) As an application of this existence theorem, he proved that a compact Kähler manifold X of dimension n with the negative first Chern class satisfies the inequality

$$(-1)^{n}c_{1}^{n}(X) \leq (-1)^{n}\frac{2(n+1)}{n}c_{1}^{n-2}(X)c_{2}(X)$$

and the equality holds if and only if X is a compact unramified quotient of the unit ball in \mathbb{C}^n .

The purpose of this article is to give a characterization of toroidal compactifications of unramified quasi-projective ball quotients with smooth boundary. This is a continuation of my work [14].

THEOREM 1. Let X be a projective algebraic manifold of dimension n defined over \mathbb{C} and let D be a smooth divisor on X. Assume that

1. $K_X + (1 - \varepsilon)D$ is ample for every sufficiently small positive rational number ε ;

2. $K_{\chi} + D$ is numerically trivial on D;

3. $K_x + D$ is ample modulo D and semiample (cf. Definitions 1, 2). Then the inequality

$$c_1^n(\Omega_X^1(\log D)) \leq \frac{2(n+1)}{n} c_1^{n-2}(\Omega_X^1(\log D)) c_2(\Omega_X^1(\log D))$$

holds and the equality holds if and only if X - D is an unramified quotient of the unit ball in \mathbb{C}^n .

Remark 1. A toroidal compactification of an unramified arithmetic quotient of the unit ball in \mathbb{C}^n with smooth boundary satisfies the condition of Theorem 1. This follows from the fact that the canonical Kähler-Einstein form represents the current which is cohomologous to 2π times the logarithmic canonical class on the toroidal compactification of the ball quotient with small boundary and the form

Received August 10, 1987. Revision received January 5, 1988.