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A CHARACTERIZATION OF BALL QUOTIENTS
WITH SMOOTH BOUNDARY

HAJIME TSUJI

1. Introduction. In 1977 S.-T. Yau proved that a compact Kihler manifold
with the negative or zero first Chern class admits a Kihler-Einstein metric [16]
(T. Aubin contributed also to the result in the case of the negative first Chern
class ([1]).) As an application of this existence theorem, he proved that a compact
Kihler manifold X of dimension n with the negative first Chern class satisfies the
inequality

(_l)nc,(X) < (_l)n2(n + 1)
n

and the equality holds if and only if X is a compact unramified quotient of the
unit ball in Cn.
The purpose of this article is to give a characterization of toroidal compactifi-

cations of unramified quasi-projective ball quotients with smooth boundary. This
is a continuation of my work [14].

TH.OEM 1. Let X be a projective algebraic manifold of dimension n defined
over C and let D be a smooth divisor on X. Assume that

1. Kx + (1- e)D is ample for every sufficiently small positive rational num-
ber e;

2. Kx + D is numerically trivial on D;
3. Kx + D is ample modulo D and semiample (cf. Definitions 1, 2).

Then the inequality

c’(K(log D))
2(n+ 1) c’-(ar(log D)) c_(a.(log D))

holds and the equality holds if and only if X- D is an unramified quotient of the
unit ball in Cn.
Remark 1. A toroidal compactification of an unramified arithmetic quotient

of the unit ball in C with smooth boundary satisfies the condition of Theorem 1.
This follows from the fact that the canonical Kihler-Einstein form represents the
current which is cohomologous to 2r times the logarithmic canonical class on the
toroidal compactification of the ball quotient with small boundary and the form
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