DERIVATIONS OF VON NEUMANN ALGEBRAS INTO THE COMPACT IDEAL SPACE OF A SEMIFINITE ALGEBRA

SORIN POPA AND FLORIN RĂDULESCU

1. Introduction and statement of results. Let M be a semifinite von Neumann algebra and let $\mathscr{J}(M)$ be the norm closed two-sided ideal generated by the finite projections of M. Let $N \subseteq M$ be a subalgebra of M. A derivation of N into $\mathscr{J}(M)$ is a linear application δ : $N \mapsto \mathscr{J}(M)$ satisfying $\delta(xy) = \delta(x)y + x\delta(y)$ for $x, y \in N$. For instance, if $K \in \mathscr{J}(M)$, then the derivation $\delta(x) = (\operatorname{ad} K)(x) = Kx - xK$ is of this type. Such derivations implemented by elements in $\mathscr{J}(M)$ are called *inner*. There are many examples of derivations of *-subalgebras $N \subseteq M$ into the ideal $\mathscr{J}(M)$ which are not inner. A typical such example is as follows: Take $M = \mathscr{B}(L^2(\mathbb{T}, \mu))$, where μ is the Lebesgue measure on the torus \mathbb{T} , let $N = C(\mathbb{T})$ act on $L^2(\mathbb{T}, \mu)$ by left multiplication, and define $\delta(x) = (\operatorname{ad} P_{H^2})(x)$, where P_{H^2} is the projection onto the Hardy subspace $H^2(\mathbb{T}, \mu)$ ([1], [11]). Then it is easy to see that $\delta(x) \in \mathscr{K}(\mathscr{H}) = \mathscr{J}(\mathscr{B}(\mathscr{H}))$ for $x \in C(\mathbb{T})$ and that δ is not implemented by a compact operator.

We will, however, show in this paper that if N is self-adjoint and w-closed in M, then, except for certain situations, all derivations of N into $\mathcal{J}(M)$ are inner. Moreover, for the most typical excepted case we'll construct a counterexample.

This derivation problem was initiated in the case $M = \mathscr{B}(\mathscr{H})$ and $\mathscr{J}(M) = \mathscr{K}(\mathscr{H})$ by Johnson and Parrott in a paper of the early '70s ([3]). In that paper Johnson and Parrott wanted to characterize the commutant modulo the ideal of compact operators $\mathscr{K}(\mathscr{H}) \subseteq \mathscr{B}(\mathscr{H})$ for a von Neumann algebra $N \subseteq \mathscr{B}(\mathscr{H})$. They noted that in order to identify it with the compact perturbations of the commutant of N in $\mathscr{B}(\mathscr{H})$, it suffices to show that any derivation $\delta: N \mapsto \mathscr{K}(\mathscr{H})$ is inner. They proved that this is indeed the case if N has no certain type II₁ factors as direct summands. To do this they first solved the case when N is abelian, the other cases being rather easy consequences of it. The general type II₁ case was proved recently in [7] by different techniques and using more of the ergodic theory of the type II₁ factors.

In [4] this derivation problem is studied in the more general setting when $\mathscr{B}(\mathscr{H})$ is replaced by a semifinite von Neumann algebra, $\mathscr{K}(\mathscr{H})$ by the ideal $\mathscr{J}(\mathcal{M})$, and the center of N is assumed to contain the center of M. Under this hypothesis it is proved that if N is either an abelian or a properly infinite von Neumann algebra, then any derivation of N into $\mathscr{J}(\mathcal{M})$ is inner.

Received March 31, 1986. Revision received September 10, 1987.