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ON THE REGULARITY OF INVERSES OF SINGULAR
INTEGRAL OPERATORS

MICHAEL CHRIST

1. Introduction. On Rd consider a convolution operator Sf f. K where K
is a distribution homogeneous of degree -d. Suppose that S extends to an

operator bounded and invertible on L2(Rd). The inverse of S is given by
convolution with a distribution L, also homogeneous of degree -d. In this paper
it will be shown that any smoothness possessed by K is shared by L. More
precisely, let L denote the Sobolev space of functions possessing 3’ derivatives in
Lr. We will show that if K Lv(Sd-x) for some 3’ > 0 and r (1, o), then also
L L(Sd- 1). Moreover, the corresponding result holds in the setting of graded
nilpotent Lie groups; it is the nonabelian case with which we are primarily
concerned.

In order to formulate our theorem precisely in the nilpotent setting, several
definitions are required. Let g be a graded finite-dimensional nilpotent Lie
algebra. By graded we mean that g admits a vector space direct sum decomposi-
tion g )j. z/gj with the property that [gi, gj] c gi+ for all i, j 7/+. Let G
be the unique connected, simply connected nilpotent Lie group with Lie algebra
g, and let D Ej. dim(g) denote its homogeneous dimension and d
Y’. dim(gj.) its dimension as a vector space. Identify g henceforth with the algebra
of left-invariant vector fields on G, and in turn identify the left-invariant vector
fields with G itself via the exponential map based at the group identity element,
0. Fix a basis { Yi: 1 < < dim(g)} as a vector space, with each Yi gj- This
basis for g establishes a canonical coordinate system x (xj.) on G via the last
two identifications, hence identifies G with R d. Haar measure equals Lebesgue
measure in these coordinates, and all integration over G in this paper will be with
respect to Haar measure. On G define dilations (i$r: r > 0} by 8r(X) (rJxji);
the map r i$ is a group homomorphism from R / to the automorphism group
of G. Define Ilxll--r-x, where r is the unique positive number satisfying
E, .r2& .2. 1 for all x 4: 0, and II011 0.

j

Let 5a and 6a’ denote respectively the Schwartz space and the space of
tempered distributions on G, defined via the identification with R d. Temporarily
setting f(x)= f(,$rX), we say that a distribution K 5a’ is homogeneous of
degree a if K, f) r--K, f) for all f 5a. Given f 5a, set f)(y)
f(xy -1) and define f.K(x)= K, ftx)) for K5a’, so that when K is a
function, f K(x) ff(xy-)K(y) dy. Now change notation and let ft)(x)
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