ON THE REGULARITY OF INVERSES OF SINGULAR INTEGRAL OPERATORS

MICHAEL CHRIST

1. Introduction. On \mathbb{R}^d consider a convolution operator Sf = f * K where K is a distribution homogeneous of degree -d. Suppose that S extends to an operator bounded and invertible on $L^2(\mathbb{R}^d)$. The inverse of S is given by convolution with a distribution L, also homogeneous of degree -d. In this paper it will be shown that any smoothness possessed by K is shared by L. More precisely, let L'_{γ} denote the Sobolev space of functions possessing γ derivatives in L'. We will show that if $K \in L'_{\gamma}(S^{d-1})$ for some $\gamma > 0$ and $r \in (1, \infty)$, then also $L \in L'_{\gamma}(S^{d-1})$. Moreover, the corresponding result holds in the setting of graded nilpotent Lie groups; it is the nonabelian case with which we are primarily concerned.

In order to formulate our theorem precisely in the nilpotent setting, several definitions are required. Let g be a graded finite-dimensional nilpotent Lie algebra. By graded we mean that g admits a vector space direct sum decomposition $g = \bigoplus_{j \in \mathbb{Z}^+} g_j$ with the property that $[g_i, g_j] \subset g_{i+j}$ for all $i, j \in \mathbb{Z}^+$. Let G be the unique connected, simply connected nilpotent Lie group with Lie algebra g, and let $D = \sum j \cdot \dim(g_j)$ denote its homogeneous dimension and d = $\sum \dim(g_i)$ its dimension as a vector space. Identify g henceforth with the algebra of left-invariant vector fields on G, and in turn identify the left-invariant vector fields with G itself via the exponential map based at the group identity element, 0. Fix a basis $\{Y_{ii}: 1 \le i \le \dim(g_i)\}$ as a vector space, with each $Y_{ii} \in g_i$. This basis for g establishes a canonical coordinate system $x = (x_{ii})$ on G via the last two identifications, hence identifies G with \mathbb{R}^d . Haar measure equals Lebesgue measure in these coordinates, and all integration over G in this paper will be with respect to Haar measure. On G define dilations $\{\delta_r: r > 0\}$ by $\delta_r(x) = (r^j x_{ji})$; the map $r \mapsto \delta_r$ is a group homomorphism from \mathbb{R}^+ to the automorphism group of G. Define $||x|| = r^{-1}$, where r is the unique positive number satisfying $\sum_{i,j} r^{2j} x_{ji}^2 = 1 \text{ for all } x \neq 0, \text{ and } ||0|| = 0.$ Let \mathscr{S} and \mathscr{S}' denote respectively the Schwartz space and the space of

Let \mathscr{S} and \mathscr{S}' denote respectively the Schwartz space and the space of tempered distributions on G, defined via the identification with \mathbb{R}^d . Temporarily setting $f'(x) = f(\delta_r x)$, we say that a distribution $K \in \mathscr{S}'$ is homogeneous of degree α if $\langle K, f' \rangle = r^{-\alpha - D} \langle K, f \rangle$ for all $f \in \mathscr{S}$. Given $f \in \mathscr{S}$, set $f^{(x)}(y) = f(xy^{-1})$ and define $f * K(x) = \langle K, f^{(x)} \rangle$ for $K \in \mathscr{S}'$, so that when K is a function, $f * K(x) = \int f(xy^{-1})K(y) \, dy$. Now change notation and let $f^{(a)}(x) =$

Received April 2, 1987. Revision received November 30, 1987. Research supported by an NSF grant and carried out in part at the Boise State University.