ON THE REGULARITY OF INVERSES OF SINGULAR INTEGRAL OPERATORS

MICHAEL CHRIST

1. Introduction. On \mathbb{R}^{d} consider a convolution operator $S f=f * K$ where K is a distribution homogeneous of degree $-d$. Suppose that S extends to an operator bounded and invertible on $L^{2}\left(\mathbb{R}^{d}\right)$. The inverse of S is given by convolution with a distribution L, also homogeneous of degree $-d$. In this paper it will be shown that any smoothness possessed by K is shared by L. More precisely, let L_{γ}^{r} denote the Sobolev space of functions possessing γ derivatives in L^{r}. We will show that if $K \in L_{\gamma}^{r}\left(S^{d-1}\right)$ for some $\gamma>0$ and $r \in(1, \infty)$, then also $L \in L_{\gamma}^{r}\left(S^{d-1}\right)$. Moreover, the corresponding result holds in the setting of graded nilpotent Lie groups; it is the nonabelian case with which we are primarily concerned.

In order to formulate our theorem precisely in the nilpotent setting, several definitions are required. Let g be a graded finite-dimensional nilpotent Lie algebra. By graded we mean that g admits a vector space direct sum decomposition $g=\bigoplus_{j \in \mathbf{Z}^{+}} g_{j}$ with the property that $\left[g_{i}, g_{j}\right] \subset g_{i+j}$ for all $i, j \in \mathbb{Z}^{+}$. Let G be the unique connected, simply connected nilpotent Lie group with Lie algebra g, and let $D=\Sigma j \cdot \operatorname{dim}\left(g_{j}\right)$ denote its homogeneous dimension and $d=$ $\sum \operatorname{dim}\left(g_{j}\right)$ its dimension as a vector space. Identify g henceforth with the algebra of left-invariant vector fields on G, and in turn identify the left-invariant vector fields with G itself via the exponential map based at the group identity element, 0 . Fix a basis $\left\{Y_{j i}: 1 \leqslant i \leqslant \operatorname{dim}\left(g_{j}\right)\right\}$ as a vector space, with each $Y_{j i} \in g_{j}$. This basis for g establishes a canonical coordinate system $x=\left(x_{j i}\right)$ on G via the last two identifications, hence identifies G with \mathbb{R}^{d}. Haar measure equals Lebesgue measure in these coordinates, and all integration over G in this paper will be with respect to Haar measure. On G define dilations $\left\{\delta_{r}: r>0\right\}$ by $\delta_{r}(x)=\left(r^{j} x_{j i}\right)$; the map $r \mapsto \delta_{r}$ is a group homomorphism from \mathbb{R}^{+}to the automorphism group of G. Define $\|x\|=r^{-1}$, where r is the unique positive number satisfying $\sum_{i, j} r^{2 j} x_{j i}^{2}=1$ for all $x \neq 0$, and $\|0\|=0$.

Let \mathscr{S} and \mathscr{S}^{\prime} denote respectively the Schwartz space and the space of tempered distributions on G, defined via the identification with \mathbb{R}^{d}. Temporarily setting $f^{r}(x)=f\left(\delta_{r} x\right)$, we say that a distribution $K \in \mathscr{S}^{\prime}$ is homogeneous of degree α if $\left\langle K, f^{r}\right\rangle=r^{-\alpha-D}\langle K, f\rangle$ for all $f \in \mathscr{S}$. Given $f \in \mathscr{S}$, set $f^{(x)}(y)=$ $f\left(x y^{-1}\right)$ and define $f * K(x)=\left\langle K, f^{(x)}\right\rangle$ for $K \in \mathscr{S}^{\prime}$, so that when K is a function, $f * K(x)=\int f\left(x y^{-1}\right) K(y) d y$. Now change notation and let $f^{(a)}(x)=$

[^0]
[^0]: Received April 2, 1987. Revision received November 30, 1987. Research supported by an NSF grant and carried out in part at the Boise State University.

