ON ISOSPECTRAL PERIODIC POTENTIALS ON A DISCRETE LATTICE I

THOMAS KAPPELER

§1. Introduction. In the "nearly free electron approximation" for the description of the behavior of the conduction electrons in a crystal one assumes that the strong interaction of these electrons with each other and with the positive ions have the net effect of a very weak D-periodic potential Q, where D denotes a certain lattice in \mathbf{R}^{3} (cf. [AM]). The eigenstates Ψ of a conduction electron can then be described by the solutions of $(-\Delta+Q) \Psi=\lambda \Psi$ with $\Psi(x+\ell)=$ $e^{i \alpha \cdot \ell} \Psi(x)$ for all vectors $\ell=\left(\ell_{1}, \ell_{2}, \ell_{3}\right)$ in the lattice D. The vector $\alpha=$ ($\alpha_{1}, \alpha_{2}, \alpha_{3}$) is called the crystal momentum. It is a fact that many properties of a crystal depend only on the family of spectra (Bloch spectrum) of $-\Delta+Q$, parametrized by the values of α, which enters the boundary condition. Observe that the periodic spectrum corresponds to the value $\alpha=0$. We are interested in the following problem: To what extent is Q determined by one or by the whole family of spectra described above? A number of partial answers to this problem are known.

For $d=1$ the situation is well understood [McKT]. The Bloch spectrum is determined by the periodic spectrum. The set of potentials with the same Bloch spectrum is generically an infinite-dimensional torus (see [McKT]). There is a number of results concerning the Schrödinger equation on compact Riemannian manifolds without boundary. For certain manifolds the spectrum of $-\Delta+Q$ does determine Q uniquely up to symmetries. For others there are counterexamples. Closely related are results concerning the question to what extent the metric of a given manifold is determined by the spectrum of the Laplacian (cf. e.g., [B], [Br], [D], [Go1], [Go2], [DG], [GW1], [GW2], [GW3], [G], [GK1], [GK2], [I], [S], [V]).

In this paper we look at a discretized and generalized version of the Schrödinger equation. To be more specific, let us introduce the following notation: Let D denote a lattice in \mathbf{Z}^{d} whose fundamental domain is given by $\Gamma=\{x=$ $\left.\left(x_{1}, \ldots, x_{d}\right) \in \mathbf{Z}^{d}: 1 \leqslant x_{i} \leqslant p_{i}\right\}$, where $p_{i} \geqslant 2$ are integers. Then we look at the following eigenvalue problem:

$$
\begin{align*}
(L+Q) u & =\lambda u \tag{1}\\
u\left(x+p_{j} e_{j}\right) & =e^{i \alpha_{j}} u(x)\left(x \text { in } \mathbf{Z}^{d}, 1 \leqslant j \leqslant d\right) \tag{2}
\end{align*}
$$

Received May 16, 1987. Revision received September 21, 1987.

