ON THE NUMBER OF PRIME FACTORS OF AN INTEGER

ADOLF HILDEBRAND AND GÉRALD TENENBAUM

1. Introduction. Let $\pi(x, k)$ denote the number of positive integers not exceeding x that have exactly k distinct prime factors. Estimates for $\pi(x, k)$ have been given by a number of authors. Landau [7, p. 211] showed that for fixed k the asymptotic formula

$$
\pi(x, k) \sim \frac{x}{\log x} \cdot \frac{(\log \log x)^{k-1}}{(k-1)!}(x \rightarrow \infty)
$$

holds. Sathe [10] and Selberg [11] proved a more precise quantitative estimate.
Let

$$
\begin{equation*}
F(z)=\frac{1}{\Gamma(z+1)} \prod_{p}\left(1+\frac{z}{p-1}\right)\left(1-\frac{1}{p}\right)^{z} \tag{1.1}
\end{equation*}
$$

where the product is taken over all primes p. Then

$$
\begin{equation*}
\pi(x, k)=F(y) \frac{x}{\log x} \cdot \frac{(\log \log x)^{k-1}}{(k-1)!}\left(1+O\left(\frac{1}{\log \log x}\right)\right) \tag{1.2}
\end{equation*}
$$

holds uniformly for $x \geqslant 3$ and $1 \leqslant k \leqslant C \log \log x$, for any given fixed $C>0$, where here and in the sequel we set

$$
\begin{equation*}
y=\frac{k}{\log \log x} . \tag{1.3}
\end{equation*}
$$

The Sathe-Selberg result remained for a long time the strongest of its kind. An extension beyond the range $k \leqslant C \log \log x$ has been obtained only quite recently by Hensley [4], who proved that

$$
\begin{align*}
\pi(x, k)= & F(y) \frac{x}{\log x} \tag{1.4}\\
& \cdot \frac{\left(\log _{2} x\right)^{k-1}}{(k-1)!} \exp \left\{-\frac{1}{2} k\left(\frac{\log _{3} x}{\log _{2} x}\right)^{2}\right\}\left(1+O\left(\frac{1}{\sqrt{\log _{3} x}}\right)\right)
\end{align*}
$$

Received August 11, 1986. Revision received January 5, 1987.

