SPECTRA OF MANIFOLDS LESS A SMALL DOMAIN

ISAAC CHAVEL AND EDGAR A. FELDMAN

Let M be a compact, connected C^{∞} Riemannian manifold and Δ the Laplace-Beltrami operator, associated to the Riemannian metric, acting on functions on M. We also let

$$\{0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \cdots \uparrow + \infty\}$$

denote the spectrum of Δ , with each eigenvalue repeated according to its multiplicity.

Let M^* be a compact submanifold of M, $\varepsilon > 0$, and B_{ε} the tubular neighborhood of M^* of radius ε . To B_{ε} we associate the restriction Δ_{ε} , of Δ , to those functions on M vanishing identically in B_{ε} . Then Δ_{ε} has spectrum

$$\{0 < \lambda_{1; \epsilon} \leq \lambda_{2; \epsilon} \leq \lambda_{3; \epsilon} \leq \cdots \uparrow + \infty\},\$$

with each eigenvalue repeated according to its multiplicity. That is, $\lambda_{j;\epsilon}$ is the *j*th Dirichlet eigenvalue of

$$\Omega_{e} \equiv : M \setminus \overline{B_{e}}.$$

In [4] it was proved that if

$$\ell \equiv : \dim M - \dim M^* \ge 2,$$

then

(1)
$$\lim_{\varepsilon \downarrow 0} \lambda_{j;\varepsilon} = \lambda_{j-1}$$

for all j = 1, 2, ... In this note we sharpen (1) to obtain the first correction term of the asymptotic expansion of $\lambda_{j;\epsilon}$ with respect to ϵ , viz.,

THEOREM 1. Let λ_{j-1} have multiplicity equal to 1, and ϕ_{j-1} be an $L^2(M)$ -normalized eigenfunction of λ_{j-1} . Then, for $\ell > 2$ and $k \equiv : \dim M^*$, we have

(2)
$$\lambda_{j;\epsilon} \sim \lambda_{j-1} + (\ell-2)\mathbf{c}_{\ell-1}\epsilon^{\ell-2} \int_{\mathcal{M}^*} \phi_{j-1}^2(y) \, dV_k(y)$$

Received April 23, 1986.