COMPLETE CONFORMAL METRICS WITH NEGATIVE SCALAR CURVATURE IN COMPACT RIEMANNIAN MANIFOLDS

PATRICIO AVILES and ROBERT C. McOWEN

In [3], Loewner and Nirenberg considered the following question: Given a smooth submanifold Γ in the sphere S^{n}, when is there a complete, conformally Euclidean metric \hat{g} on $S^{n} \backslash \Gamma$ with constant negative scalar curvature? The answer is that such a metric exists if and only if $d=\operatorname{dim} \Gamma>(n-2) / 2$. (Cf. [1], [3], and [5].) In this paper we observe that the same conclusions hold if S^{n} is replaced by any compact Riemannian manifold without boundary:

Theorem. Suppose (M, g) is a compact Riemannian manifold of dimension $n \geqslant 3$ and let Γ be a closed smooth submanifold of dimension d. Then there is a complete conformal metric \hat{g} on $\hat{M}=M \backslash \Gamma$ with constant negative scalar curvature if and only if $d>(n-2) / 2$.

Our proof of the existence of \hat{g} generalizes that of [3] when the first eigenvalue λ_{0} of the "conformal Laplacian" on \hat{M} is nonnegative, but for $\lambda_{0}<0$ we must invoke a result from [2]; to prove the necessity of the condition on d, we must abandon the explicit solutions used in [3] in favor of an analysis related to [1].

As a special case we may take $d=n-1$ so that (\hat{M}, g) is a compact Riemannian manifold with boundary (not necessarily connected). In fact, if we start with a compact Riemannian manifold (\hat{M}, g) with boundary $\Gamma=\partial \hat{M}$, we may embed it in a manifold without boundary, extend g, and apply the above to obtain:

Corollary. Any compact Riemannian manifold with boundary admits a complete conformal metric with constant negative scalar curvature.

Note. All manifolds, submanifolds, and metrics in this paper are assumed to be smooth, i.e., C^{∞}. In particular, the metric on a manifold with boundary is assumed to be smoothly extendible to a neighborhood of the boundary.

1. Proof of "if." We want to find a positive solution of

$$
\begin{aligned}
\Delta u-u^{(n+2) /(n-2)} & =\frac{n-2}{4(n-1)} S u \quad \text { in } \quad \hat{M}=M \backslash \Gamma \\
u & \rightarrow+\infty \quad \text { as } \quad x \rightarrow \Gamma,
\end{aligned}
$$

where S denotes the scalar curvature. We consider cases depending on the sign of
Received May 11, 1987.

