CARLEMAN'S AND SUBELLIPTIC ESTIMATES

NICOLAS LERNER

1. Introduction. The main goal of this paper is to give a positive answer on a conjecture of Treves [9] that has been partially investigated by Menikoff [7]. Let us first recall what is meant by a Carleman estimate, a very useful tool in proving uniqueness properties for semilinear PDE. Let s be a real number and γ a "parameter" larger than 1. We set (e.g., for $u \in \mathscr{S}(\mathbb{R}^n)$)

(1.1)
$$||u||_{s,\gamma} = \left(\int (\gamma^2 + |\xi|^2)^s |\hat{u}(\xi)|^2 d\xi\right)^{1/2}$$

Note that $||u||_{0,\gamma} = ||u||_{L^2}$, and that if s is a positive integer, $||u||_{s,\gamma}$ is equivalent to $\gamma^{s} \|u\|_{L^{2}} + \|u\|_{H^{s}}$ or

$$\sum_{j=0}^{s} \gamma^{s-j} \|u\|_{H^j}$$

(uniformly with respect to u and $\gamma \ge 1$). Let P be a differential operator of order m in Ω open set of \mathbb{R}^n , and ψ a smooth real-valued function. We set

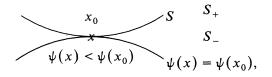
(1.2)
$$P_{\gamma} = e^{-\gamma \psi} P e^{\gamma \psi} \qquad (\gamma \ge 1).$$

A Carleman estimate with loss $\delta = k/k + 1$ will be

(1.3)
$$\gamma^{1/k+1} \|u\|_{m-1,\gamma} \leq C \big(\|P_{\gamma}u\|_{L^{2}} + \|u\|_{m-1,\gamma} \big),$$

satisfied for $\gamma \ge \gamma_0 \ge 1$ and $u \in C_0^{\infty}(K_0)$, K_0 compact $C\Omega$.

Such an estimate is useful to prove the (local forward) uniqueness for the Cauchy problem across any (oriented) hypersurface S such that the level surface of ψ is as follows:



Received March 2, 1987. Revision received April 22, 1987.