A SHARP CASTELNUOVO BOUND FOR SMOOTH SURFACES

ROBERT LAZARSFELD

Introduction. Consider a smooth irreducible complex projective variety $X \subset$ \mathbb{P}^{r} of degree d and dimension n, not contained in any hyperplane. There has been a certain amount of interest recently in the problem of finding an explicit bound, in terms of n, d and r, on the degrees of hypersurfaces that cut out a complete linear system on X. At least for $r \geqslant 2 n+1$, the best possible linear inequality would be:

$$
\begin{equation*}
H^{1}\left(\mathbb{P}^{r}, I_{X / \mathbb{P}^{r}}(k)\right)=0 \quad \text { for } k \geqslant d+n-r . \tag{*}
\end{equation*}
$$

This was established for (possibly singular) curves in [GLP], completing classical work of Castelnuovo [C]. For X of arbitrary dimension, Mumford (cf. [BM]) showed that $H^{1}\left(I_{X / \mathbf{P}^{r}}(k)\right)=0$ for $k \geqslant(n+1)(d-2)+1$. Pinkham [P] subsequently obtained the sharper estimate that if X is a surface, then hypersurfaces of degree $\geqslant d-2$ [resp. $\geqslant d-1$] cut out a complete series when $r \geqslant 5$ [resp. $r=4$], but he left open the question of whether or not (*) holds. Recently Gruson has extended Pinkham's theorem to threefolds.

The purpose of this note is to complete Pinkham's result by establishing the optimal bound (*) for surfaces:

Theorem. Let $X \subset \mathbb{P}^{r}$ be a smooth irreducible complex projective surface of degree d, not contained in any hyperplane. Then hypersurfaces of degree $d+2-r$ or greater cut out a complete linear series on X.

By the theory of Castelnuovo-Mumford [M, Lecture 14], the theorem has implications for the equations defining X in \mathbb{P}^{r} :

Corollary. In the situation of the theorem, the ideal sheaf $I_{X / p^{r}}$ is $(d+3$ $-r$)-regular in the sense of Castelnuovo-Mumford. In particular, the homogeneous ideal of X is generated by forms of degrees $(d+3-r)$ or less.

Bounds on the regularity of an ideal sheaf are important in connection with algorithms for computing syzygies (cf. [BS]), and this accounts for some of the recent interest in these questions.

The proof of the theorem revolves around a technique used by Gruson and Peskine in their work on space curves [GP1, GP2]. As in the arguments of

Received October 14, 1986. Partially supported by a Sloan Fellowship and NSF grant DMS 86-03175.

