ON SCHOTTKY AND KOEBE-LIKE UNIFORMIZATIONS

DENNIS A. HEJHAL

This note is an elaboration and extension of [11, section 2]. For an overview of the contents, consult theorems 1, 2, 4, 6.

I. Circle domains. It is well known that any smoothly bounded plane domain of finite connectivity is *conformally equivalent* to a domain bounded by circles, and that any such (conformal) mapping is unique up to an auxiliary linear fractional transformation.

This result is due to P. Koebe [18–21]. Cf. [10, pp. 201–217] for a self-contained treatment based on the time-honored continuity method.

II. A generalization of the Koebe mapping. Given any positive integer $p \ge 3$. Let \mathscr{R}_0 denote the Riemann surface of $u = z^{1/2}$ regarded as a ramified covering of $\hat{\mathbb{C}}$. There are two sheets with branch points located at $z = 0, \infty$. For the sake of definiteness: we take the branch cut to be $\{z \in \hat{\mathbb{C}} : \arg(z) = \pi\}$. Cf. figure 1. Let $\mathscr{R} = \mathscr{R}_0 - \{$ the branch points $\}$.

Let Φ be the holomorphic function on \mathscr{R} defined by writing

$$\Phi(z) = \Phi[(z, u)] = u.$$

Loosely speaking: Φ is the branch of \sqrt{z} which takes the value +1 at the point z = 1 in the upper sheet of \mathcal{R} . A moment's thought shows that Φ is a 1-1 conformal mapping of \mathcal{R} onto $\hat{\mathbb{C}} - \{0, \infty\}$.

Let \mathscr{B} be the family of domains (of connectivity p) depicted by figure 2. The paths $C_0, C_1, \ldots, C_{p-1}$ are circles $|z - a_j| = r_j$ subject to the condition $a_0 = a_1 = 0$, $r_0 < a_2 < 1$, $r_1 = 1$.

Let \mathcal{M} be the family of circle domains on \mathcal{R} depicted by figure 3. The paths $\Gamma_0, \Gamma_1, \ldots, \Gamma_{p-1}$ are circles $|z - b_j| = R_j$ where we assume that:

 $b_0 = b_1 = 0, R_0 < b_2 < 1, R_1 = 1$

 Γ_0 and Γ_1 go around twice

 $\Gamma_2, \ldots, \Gamma_{p-1}$ go around once

 Γ_2 is located in the first sheet (i.e., Φ has positive real part).

Received January 31, 1986. Revision received October 6, 1986. Supported in part by NSF Grant MCS 83-03535. This paper was written while the author was a visiting member of the Institute for Advanced Study.