ON LIMIT MULTIPLICITIES OF REPRESENTATIONS WITH COHOMOLOGY IN THE CUSPIDAL SPECTRUM

JÜRGEN ROHLFS AND BIRGIT SPEH

Introduction. Let G be a connected noncompact semi-simple Lie group with maximal compact subgroup K and denote by V an irreducible finite dimensional representation of G. If $\Gamma \subset G$ is an arithmetic subgroup it is well known that the abstract group cohomology $H^{\cdot}(\Gamma, V)$ of Γ with coefficients V coincides with the (\mathfrak{g}, K) -cohomology $H^{\cdot}(\mathfrak{g}, K, \mathbb{C}^{\infty}(\Gamma \setminus G) \otimes V)$ where \mathfrak{g} is the Lie algebra of G and $\mathbb{C}^{\infty}(\Gamma \setminus G)$ the space of \mathbb{C}^{∞} -functions on $\Gamma \setminus G$. Let $L^2_{cusp}(\Gamma \setminus G)$ be the space of cusp forms in the space $L^2(\Gamma \setminus G)$ of square integrable functions on $\Gamma \setminus G$. We denote the natural image of $H^{\cdot}(\mathfrak{g}, K, L^2_{cusp}(\Gamma \setminus G) \otimes V)$ in $H^{\cdot}(\Gamma, V)$ by $H^{\cdot}_{cusp}(\Gamma, V)$.

In this paper we assume throughout that $\Gamma \setminus G$ is not compact and consider the behavior of $H_{cusp}^{\cdot}(\Gamma, V)$ when Γ becomes smaller and smaller.

To make our statements precise we use the notion of a tower of arithmetic subgroups which is a collection $\{\Gamma_i\}_{i \in \mathbb{N}}$ of arithmetic subgroups of G with $\Gamma_{i+1} \subset \Gamma_i$ for all $i, \bigcap_{i=0}^{\infty} \Gamma_i = \{1\}$ such that all Γ_i 's are normal in $\Gamma = \Gamma_0$.

The following results have been announced in [R-Sp].

THEOREM. If $\{\Gamma_i\}_{i \in \mathbb{N}}$ is a tower of arithmetic subgroups, then

$$\lim_{i\to\infty} \left[\Gamma: \Gamma_i \right]^{-1} \left(\dim H^{\cdot}(\Gamma_i, V) - \dim H^{\cdot}_{cusp}(\Gamma_i, V) \right) = 0.$$

This is proved in §2 where we treat the contributions of the Borel–Serre boundary and in §3 where we handle residual contributions.

We write as usual $\chi(\Gamma_i, V)$ resp. $\chi_{cusp}(\Gamma_i, V)$ for the Euler-Poincaré characteristic computed from $H^{\cdot}(\Gamma_i, V)$ resp. $H^{\cdot}_{cusp}(\Gamma_i, V)$ and if $V = \mathbb{C}$, we omit the letter V in the notion of Euler-Poincaré characteristics.

We get as an easy application:

COROLLARY. If $\{\Gamma_i\}_{i \in \mathbb{N}}$ is a tower of arithmetic subgroups, then

$$\lim_{i\to\infty} [\Gamma:\Gamma_i]^{-1}\chi_{\rm cusp}(\Gamma_i,V) = \chi(\Gamma)\dim V$$

where in case that Γ has torsion elements $\chi(\Gamma)$ is the virtual Euler Poincaré characteristic, see [S].

Received February 28, 1986. Revision received May 27, 1986. Second author partially supported by NSF-Grant DMS-8501793.