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WEAK (1,1) BOUNDS FOR OSCILLATORY
SINGULAR INTEGRALS

SAGUN CHANILLO AND MICHAEL CHRIST

1. Introduction. Consider the operator Mf(x)= pvfaf(x- t)exp(it2)t-ldt
on R. M is known to be bounded on Le(R) for all p (1, oo), and to map L
to BMO. However the oscillatory factor exp(it 2) prevents one from applying the
standard Calder6n-Zygmund method to prove weak type (1,1) bounds. In this
paper we apply a variant of that method to establish weak (1,1) bounds for a
class of operators of which M is the simplest example. A portion of our
technique is fairly general and may prove useful in other problems.

TI-IEORM. For any polynomial P: " g" and any Calderbn-Zygmund
kernal K, the operator Tf(x) pvfeie(x’y)K(x y)f(y) dy is of weak type on L1,
with a bound depending only on IIKIIcz and the degree of P.
By a Calder6n-Zygmund kernel we mean a function K which is C away from

the origin, has mean value zero on each sphere centered at the origin and satisfies

(1.1) IK(x)l Blxl- and IvK(x)l Blxl-"-.

IlKllcz is defined to be the least value of B for which (1.1) holds. Ricci and Stein
[RS1, 2] have proved that T is bounded on Lp, 1 < p < oo. It is also known that
convolution operators with kernels of the form exp(ilxla)K(x), with K
Calder6n-Zygmund, are of weak type (1,1) for all 0 < a 4:1 [CKS 1, 2].

This result is related to an open question concerning Hilbert transforms along
curves. Consider the operator Hf(x) pvfaf(x t, X2 t2)t- dt in R9.. The
question is whether H is of weak type on L. If it were, it would follow that M is
also; for the proof consider functions of the form f(x) g(xl)eXXixl<s and
let B oo. The techniques employed in this paper have led to a partial result in
this direction; see [C3].

It was precisely in the analysis of operators of that type that the class of
oscillatory singular integrals treated here arose; see [PS], [RS2] and the references
listed there. In particular Phong and Stein [PSI used L2 bounds for oscillatory
integrals as one part of a machine which established the L2 boundedness of
operators associated to Calder6n-Zygmund kernels on families of hypersurfaces
satisfying certain geometric hypotheses. Motivated by their work, the second of
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