# CONGRUENCES FOR PERIODS OF MODULAR FORMS 

NEAL KOBLITZ

To Yuri Ivanovich Manin on the occasion of his fiftieth birthday
§1. Introduction. Starting with Yu. I. Manin's paper [17], much attention has been devoted to $p$-adic congruences for the periods of modular forms of varying weights $k$. Our first purpose is to give an exposition of a part of this work. In addition, we give a congruence of the Ramanujan type for the odd periods of a cusp form for $S L_{2}, \mathbb{Z}$, in the six cases when the space of such cusp forms is 1 -dimensional (Theorem 2). Finally, in $\S 4$ we discuss how $p$-adic congruences can be used as evidence of the existence of canonical square roots of the central critical Hecke $L$-series values $L\left(\psi^{k-1}, k / 2\right)$, presumably connected with the arithmetic of the corresponding elliptic curve.
§2. Periods of cusp forms for $\boldsymbol{S L}_{\mathbf{2}}(\mathbb{Z})$. Let $\Phi(z)=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z}$ be an element of the space $S_{k}$ of cusp forms of weight $k$ for the full modular group $S L_{2}(\mathbb{Z})$. The moments or periods of $\Phi$ are defined as follows:

$$
\begin{equation*}
r_{m}(\Phi)=\int_{0}^{i \infty} \Phi(z) z^{m} d z, \quad m \geqslant 0 . \tag{1}
\end{equation*}
$$

Set $w=k-2$. The periods of $\Phi$ for $m \leqslant w$ are closely related to the values at integer points in the critical strip of the Hecke $L$-series corresponding to $\Phi$, which is defined in a right half-plane by $L_{\Phi}(s)=\sum a_{n} n^{-s}$. This will be described more precisely later. These $L$-series values are called "special values" or "critical values" of the $L$-function.

Eichler-Shimura's rationality result. If the coefficients $a_{n}$ are real, then the periods $r_{m}(\Phi)$ with $m$ odd are real, and the even periods are purely imaginary. One then separately considers the ( $w / 2$ )-tuple $\mathbf{r}^{-}(\Phi)\left(r_{1}(\Phi), \ldots, r_{w-1}(\Phi)\right) \in \mathbf{R}^{w / 2}$ of odd periods and the $(w / 2+1)$-tuple $\mathbf{r}^{+}(\Phi) \in \mathbf{R}^{w / 2+1}$ of even periods. Eichler and Shimura found a set of linear equations with rational integer coefficients which are satisfied by these period vectors for any $\left(\frac{1}{i} r_{0}(\Phi), \ldots, \frac{1}{i} r_{w}(\Phi)\right) \Phi \in S_{k}$. Moreover, if $V^{-} \subset \mathbf{R}^{w / 2}$ and $V^{+} \subset \mathbf{R}^{w / 2+1}$ denote the subspaces consisting of all vectors which satisfy these linear relations, then Eichler-Shimura proved that the map $S_{k} \rightarrow V^{-}$given by $\Phi \mapsto \mathbf{r}^{-}(\Phi)$ is an isomorphism, and the map $S_{k} \rightarrow V^{+}$ given by $\Phi \mapsto \mathbf{r}^{+}(\Phi)$ is an isomorphism onto a subspace of codimension 1 in $V^{+}$. For a complete exposition, see [13].

Received October 1, 1986.

