ENDOMORPHISMS AND TORSION OF ABELIAN VARIETIES

YU. G. ZARHIN

To Yu. I. Manin, with admiration and gratitude

Introduction. Let K be a number field of finite degree over the field \mathbb{Q} of rational numbers, \overline{K} the algebraic closure of K and $G = \text{gal}(\overline{K}/K)$ the Galois group. Let X be an Abelian variety over K and End X the ring of K-endomorphisms of X. The well-known Mordell-Weil theorem [4] asserts that X(K) is a finitely generated commutative group. In particular, the torsion subgroup TORS X(K) of X(K) is finite.

Let p be a prime and K_p the subfield of \overline{K} obtained by adjoining to K all p-power roots of unity in \overline{K} . B. Mazur conjectured that $X(K_p)$ is also finitely generated (see [6], [5]). In this connection J.-P. Serre and H. Imai [3] proved (independently) that the torsion subgroup of $X(K_p)$ is finite for each p. Moreover, let K^{cycl} be the compositum of all the K_p , i.e., the field obtained by adjoining to K all roots of unity in \overline{K} . K. A. Ribet [8] proved that the torsion subgroup of $X(K^{\text{cycl}})$ is also finite.

Let $\hat{K}^{ab} \subset \vec{K}$ be the maximal abelian extension of K. The field K^{ab} contains K^{cycl} ; if $K = \mathbb{Q}$, then $\mathbb{Q}^{cycl} = \mathbb{Q}^{ab}$ (the Kronecker-Weber theorem).

What can one say about the finiteness of the torsion subgroup TORS $X(K^{ab})$ of $X(K^{ab})$? The answer depends on the properties of the following endomorphism algebra of X:

$$\operatorname{End} \circ X = \operatorname{End} X \otimes \mathbb{Q}.$$

Recall ([7], [10], [11]) that X is called of CM-type over K if the finite-dimensional semisimple Q-algebra End \circ X contains a semisimple commutative Q-subalgebra (i.e. the finite direct sum of number fields) of dimension 2 dim X. If X is a K-simple Abelian variety, then End \circ X is a division algebra and the following conditions are equivalent; (1) X is of CM-type over K; (2) End \circ X is a number field of degree 2 dim X; (3) End \circ X contains a number field of degree 2 dim X.

If X is of CM-type over K, then all the torsion points of X are defined over K^{ab} [10, 11], i.e., the torsion subgroups of $X(K^{ab})$ and $X(\overline{K})$ coincide. In particular, TORS $X(K^{ab})$ is infinite if X is of CM-type over K.

If Y is an Abelian variety defined over K and K-isogenous to X, then TORS $X(K^{ab})$ is finite if and only if TORS $Y(K^{ab})$ is finite. If Y is K-isomor-

Received September 5, 1986.