A NOTE ON PSEUDO-CM REPRESENTATIONS AND DIFFERENTIAL GALOIS GROUPS

Dedicated to Y. I. Manin on his fiftieth birthday

NICHOLAS M. KATZ AND RICHARD PINK

Introduction. This note, a sequel to [Ka-1], falls into two parts. In the first, we give a criterion for a connected semisimple algebraic subgroup of GL(n) to be one of the following subgroups:

SL(n), if $n \ge 2$ Sp(n) or SO(n), if n is even and ≥ 4 .

The criterion is based on the classification of what we call "pseudo-CM representations", a natural generalization of the notion of "CM representation" introduced in [Ka-1]. The second part applies these results to determine the differential galois groups of some concrete differential equations, including the general Kloosterman equation on \mathbf{G}_m .

Part 1. Throughout this section, k is an algebraically closed field of characteristic zero, n is an integer ≥ 2 , V is an n-dimensional vector space over k, G is a Zariski closed subgroup of GL(V), and G^0 is the identity component of G.

THEOREM 1. Suppose that

- (1) G^0 lies in SL(V).
- (2) As G^0 -representation, V is irreducible.
- (3) There exists an element g in G, and a connected torus T in G^0 such that
 - (a) As T-representation, V is the direct sum of n distinct characters c₁,..., c_n.
 (b) T is Ad(g)-stable, i.e., gTg⁻¹ = T.
 - (c) The automorphism Ad(g) of T cyclically permutes the n characters c_1, \ldots, c_n .

Then there exist

an integer $r \ge 1$

- a factorization of n as $n = n_1 \dots n_r$ with all $n_i \ge 2$ and the n_i pairwise relatively prime.
- algebraic groups G_1, \ldots, G_r , with each G_i equal to one of the groups

 $SL(n_i)$ is odd or = 2

 $SL(n_i)$ or $Sp(n_i)$ or $SO(n_i)$ if n_i is even ≥ 4 .

Received October 11, 1986. Second author supported by deutscher Akademischer Austauschdienst (DADD) during the academic year 1985-86.