VOLUME DE TUBES AUTOUR DE SINGULARITES

FRANÇOIS LOESER

Introduction. Pour X une sous-variété analytique lisse de \mathbb{C}^N , la formule d'Hermann Weyl exprime le volume $I(\epsilon)$ du tube formé des points situés à une distance inférieure à ϵ de X dans un polydisque fixé dont la frontière est transverse à X comme un polynôme en ϵ^2 , pour ϵ assez petit. Dans le cas où X a des singularités une telle formule n'est plus valide car le tube présentera toujours de l'autointersection.

Cependant nous pouvons montrer que ce volume admet un développement asymptotique de la forme:

$$I(\epsilon) = \sum_{\substack{i < 2N \\ \alpha \in F + N}} C_{\alpha,i} \epsilon^{\alpha} (\log \epsilon)^{i},$$

F étant un ensemble fini de rationnels. Il est très probable que l'on peut remplacer 2N par 2N-1.

Comme attendu la partie principale de ce développement correspond à la partie lisse:

$$I(\epsilon) = \frac{\pi^d}{d!} \operatorname{vol}(X \cap P) \epsilon^{2d} + o(\epsilon^{2d}),$$

d étant la codimension de X (supposé équidimensionnel).

Il est donc naturel d'étudier le terme suivant apparaissant dans le développement asymptotique de $I(\epsilon)$ et son lien avec les singularités de X. C'est ce que l'on fait ici dans le cas des courbes planes. Le premier exposant non entier qui apparaît dans ce cas est $2(1 + \kappa^{-1})$ où κ désigne l'exposant de bifurcation maximale introduit par Lê Văn Thành. Cet invariant ne dépend que du type topologique plongé de la courbe et pour une courbe irréductible est égal à β_g/n , le plus grand exposant de Puiseux.

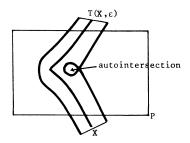


FIGURE 1.

Received October 28, 1985.