CLOSED TRAJECTORIES FOR QUADRATIC DIFFERENTIALS WITH AN APPLICATION TO BILLIARDS

HOWARD MASUR

Introduction. One aspect of the study of any dynamical system is the problem of periodic orbits. In this paper we consider periodic orbits for the dynamical system of a polygonal table with angles, rational multiples of π , the so called rational billiards. A point in the polygon and a choice of initial angle defines an orbit. Rational billiards were first considered in [F-K] and more recently in [Z-K], [G], [Bosh], [B-K-M], and [K-M-S]. In [B-K-M] the question was raised whether every rational billiard has a periodic orbit. This paper answers that question in the affirmative.

THEOREM 1. For any rational billiard table there is a dense set of directions each with a periodic orbit.

Following a line of work begun in [K-M-S] we transform the problem of the dynamics of the billiard flow in the different directions into the problem of considering the flows defined by $\operatorname{Re} e^{i\theta} \phi$ where ϕ is a holomorphic 1-form on a compact Riemann surface and $0 \leq \theta < 2\pi$. In fact we prove the more general result.

THEOREM 2. Let q be any holomorphic quadratic differential on a compact Riemann surface of genus $g \ge 2$. There exists a dense set of θ for which $e^{i\theta}q$ has a closed regular vertical trajectory.

Theorem 2 is more general because billiards only give rise to certain compact Riemann surfaces and holomorphic 1-forms. Further, we consider quadratic differentials whose trajectory structures include those given by 1-forms but also include nonorientable foliations.

For a description of how the orbits on a rational table give rise to the flow of $e^{i\theta}\phi$ on a compact Riemann surface we refer to [B-K-M]. This paper is otherwise independent of that paper.

The idea in the proof of Theorem 2 as in [B-K-M] is to use Teichmüller theory. We will consider all Teichmüller extremal maps defined by $e^{i\theta}q$, for θ in an arbitrary closed interval, a sector in the *Teichmüller disc* and consider this sector projected to the moduli space. We show there must be accumulation points on the boundary of moduli space. By repeating a certain minimizing argument on lengths of curves, we in fact show there must be accumulation points whose

Received January 7, 1985. Research supported in part by NSF MCS 8402208.