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FORMAL DECOMPOSITION OF n COMMUTING
PARTIAL LINEAR DIFFERENCE OPERATORS

C. PRAAGMAN

§1. Introduction. Let (e, ..., e,) be a basis of the lattice Z" in C", and
z €C". Consider the overdetermined system of partial linear difference
equations:

u(z+e)— A;(z)u(z) =0, i=1,...,n. Q)
Here the A, are complex valued matrix functions of z, satisfying the relations:
Ai(z + ¢)A;(2) = A;(z + €)A;(2). (2)
These equations arise in the theory of Gauss—Manin connections: Let

n

z.dP,
w(z)=2_/_ﬁ_’, z=(zy,...,2,)€EC P,EC[x), - %]
J

be a rational form on C*, S the zero set of P\P, ... P, then w(z) defines for all
z € C™ a Gauss-Manin connection on C¥\S. Using the fact that under suitable
hypotheses the hypercohomology of an associated DeRham complex vanishes,
Aomoto shows in [1] and [2], that certain integrals of P{'Pj2... P/ satisfy a
system of type (1) with 4, € G1,(C(2)).

He also solves partially the inverse problem: Recovering the integrals from the
system (1). Note that if 4, € Gl,,(C(2)) for all i, then there exists a meromorphic
fundamental solution of (1) (see for instance Praagman [13]). However, in
general it is difficult to find this solution explicitly. Therefore one proceeds in the
following way: Solve (1) formally, and prove that there exists a unique solution,
having this formal solution as asymptotic expansion as z—> co. In [1] Aomoto
uses this technique, but has to allow serious restrictions on the A4;, in order to
prove the existence of a formal solution. Precisely, the formal solution follows as
a corollary of the following theorem:

THEOREM (1.1 of [1]). Assume A, € Gl,(C(2)) for all i, and for z, = o0,
z'=(zy,...,2,)A; admits a Laurent expansion of the form:

Ay (2) = A(2)zf + Ay (2)zf 4 - -
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