SURFACES WITH A HYPERELLIPTIC HYPERPLANE SECTION

LAWRENCE EIN

A. Sommese has asked the following questions.

Questions. Let L be a very ample line bundle on a complex nonsingular surface X.

(a) When is $K_X \otimes L$ generated by its global sections?

(b) When is $K_X \otimes L$ very ample?

By using some ideas developed by Bombieri about *n*-connected divisors, Van de Ven ([8]) gave a very elegant proof to the following theorem.

THEOREM 1. (a) (Van de Ven, Sommese). Let (X, L) be as above. Then $K_X \otimes L$ is generated by its global sections if and only if L is not one of the following:

(i) $\mathcal{O}(1)$ and $\mathcal{O}(2)$ on P^2 .

(ii) a line bundle on a ruled surface, the restriction of which to a fibre has degree one.

(b) (Van de Ven). If $h^0(X, L) \ge 7$ and $c_1(L)^2 \ge 10$, then $L \otimes K_X$ is very ample except in the following cases:

(i) X is a ruled surface and the restriction of L to a fibre has degree one or two. (ii) X contains a nonsingular rational curve C such that $L|_C \simeq \mathcal{O}_{P^1}(1)$ and $C^2 = -1$.

In [7], Sommese gave another proof to (a) and he has studied the map associated with $|K_X \otimes L|$ in great details. Furthermore, using the Riemann Roch formula of P^4 and the inequalities he obtained, he is also able to classify those surfaces in P^4 with a nonsingular hyperelliptic hyperplane section.

In this paper, by combining and refining the methods of Van de Ven, Sommese and Ramanujam, we are also able to answer (b) for $h^0(L) \le 6$. The main results of this paper are the following two theorems.

THEOREM 2. Let X be a nonsingular complex projective surface and L be a very ample line bundle on X with $h^0(L) \le 6$ and $c_1(L)^2 \ge 10$. Then $L \otimes K_X$ is very ample except in the following cases:

(1) X is a ruled surface and the restriction of L to a fibre has degree one or two. (2) The surface contains a smooth rational curve C with $C^2 = -1$ and $L|_C \cong \mathscr{O}_{\mathbf{P}^1}(1)$.

(3) $h^0(L) = 5$ and $10 \le c_1(L)^2 \le 11$ and $h^1(\mathcal{O}_X) = 1$.

Received July 27, 1982. Author supported by the AMS Research Fellowship.