VARIETIES OF LOW Δ -GENUS

TONY HOROWITZ

Introduction. Let $C \subset \mathbb{P}^n$ be an irreducible curve not lying in any hyperplane. Then deg $C \ge n$; else a hyperplane through any *n* points of *C* must contain *C* by Bézout. Similarly, if $X \subset \mathbb{P}^n$ is an irreducible variety of dimension *r* not lying in any hyperplane, then deg $X \ge n - r + 1$; for the section of *X* by a general (n - r + 1)-dimensional linear subspace $\Lambda \subset \mathbb{P}^n$ is an irreducible curve $C \subset \Lambda$ with deg C = deg X.

Now let V be a smooth, irreducible variety, $r = \dim V$, L a line bundle on V such that $|L| = PH^0(V, L)$ has no base locus. Let us assume moreover that the morphism $\rho_L: V \to P^n$ associated to the linear system |L| is birational; here $n = h^0(V, L) - 1$ (we say that L is "birationally very ample"). Let $X = \rho_L(V)$, $d = d(V, L) = c_1(L)^r$; then $d = \deg X$ and $d + r \ge h^0(V, L)$ by the previous paragraph. We define

$$\Delta = \Delta(V, L) = d + r - h^0(V, L);$$

Fujita ([F1], [F2]) calls this the Δ -genus of (V, L). (In fact, he shows that $\Delta(V, L) \ge 0$ for any ample line bundle L; we will not be using this, however.)

It is well known that if $\Delta(V, L) = 0$, then X is one of the following: (1) P^r (2) A quadric hypersurface in P^{r+1} (3) The Veronese surface in P^5 or a cone over it (4) A rational normal scroll (i.e., $(V, L) \cong (\mathsf{P}E, \mathscr{O}_{\mathsf{P}E}(1))$, where E is a vector bundle on P^1 such that E^* has global sections and $\mathscr{O}_{\mathsf{P}E}(1)$ is the birationally very ample tautological line bundle). (See Harris [JH], Fujita [F2].) Fujita ([F3]) and Iskovskih ([I]) have classified (V, L) with $\Delta(V, L) = 1$.

It is worth noting that if $\Delta(V,L) = 1$, then $h^0(V,L) \le 10$. The general fact for regular surfaces V is that if $\Delta = \Delta(V,L) \ge 1$, then $h^0(V,L) \le 3\Delta + 6$, with the single exception of the del Pezzo surface in P⁹, where $h^0(V,L) = 10 = 3\Delta + 7$. We will review an argument of Harris and Eisenbud for this result in Section 1. Hence, with this exception, a regular surface V with $\Delta(V,L) < \frac{1}{3}h^0(V,L) - 2$ must have $\Delta(V,L) = 0$. Our first objective is the following generalization:

THEOREM A. Suppose $r = \dim V = 2$, $(V, L) \neq (\mathbb{P}^2, \mathcal{O}(3))$, $\Delta(V, L) < \frac{1}{3}h^0(V, L) - 2$. Then $X = \rho_L(V)$ is projectively ruled, and $\Delta(V, L) = 2h^1(\mathcal{O}_V) - h^1(V, L)$. In particular, $h^1(\mathcal{O}_V) \leq \Delta(V, L) \leq 2h^1(\mathcal{O}_V)$.

COROLLARY. Suppose $r \ge 3$, L very ample, and $2 \le \Delta(V, L) < \frac{1}{3}(h^0(V, L) - r - 4)$. Then $X = \rho_L(V)$ is projectively ruled (i.e. there exists a morphism of V to a

Received January 13, 1983.