ON THE PERIOD MAP FOR SURFACES WITH $K_{S}^{2}=2, p_{g}=1, q=0$ AND TORSION Z/2Z
 P. OLIVERIO

Summary. In questo lavoro diamo un controesempio al teorema di Torelli per superficie S con $K_{S}^{2}=2, p_{g}=1, q=0$ e torsione $Z / 2 Z$. Se $\mu: H^{1}\left(S, T_{S}\right) \rightarrow H^{1}(S$, Ω_{S}^{1}) é l'applicazione infinitesimale di Torelli, allora si ha $\operatorname{dim}(\mathrm{ker} \mu) \geqslant 1 \mathrm{e}$ infatti 1 , genericamente. In tal modo, se $\Psi: \mathscr{M} \rightarrow \Gamma \backslash D$ é l'applicazione dei periodi, la fibra generale ha dimensione 1 .

Introduction. In this paper we study the period map [5] of surfaces with $K^{2}=2, p_{g}=1, q=0$ and torsion $Z / 2 Z$. Surfaces S with $K_{S}^{2}=2, p_{g}=1, q=0$ and torsion $Z / 2 Z$ have been described in [4]. One obtains such surfaces as quotient of weighted complete intersections of type $(4,4)$ in $\mathrm{P}(1,1,1,2,2)$ by the involution $\tau:\left(W, X_{1}, X_{2}, Z_{3}, Z_{4}\right) \rightarrow\left(W,-X_{1},-X_{2},-Z_{3},-Z_{4}\right)$. Further in [4] it is proved that their moduli space \mathscr{M} is irreducible and rational of dimension 16. Using the fact that when K_{S} is ample the Kuranishi family is smooth and can be explicitly described, we compute the differential μ of the period map with methods similar to the ones used in [2]. It turns out that $\operatorname{dim}(\operatorname{ker} \mu) \geqslant 1$ and indeed $=1$ on Zariski open subset of \mathscr{M}. Therefore, if we denote by $\Gamma \backslash D$ the classifying space for pure Hodge structure of weight 2 and Hodge numbers $(1,18,1), \Gamma \backslash D$ has dimension 18 and the period map $\Psi: \mathscr{M} \rightarrow \Gamma \backslash D$ has a general fibre of dimension 1.

Notation. $W \in H^{\circ}\left(S, \mathscr{O}_{S}\left(K_{S}\right)\right)$ is the unique (up to constants) nonzero section.
R is the graded ring $\mathrm{C}\left[W, X_{1}, X_{2}, Z_{3}, Z_{4}\right]$, where $\operatorname{deg} W=1$, $\operatorname{deg} X_{1}=1$, $\operatorname{deg} X_{2}=1, \operatorname{deg} Z_{3}=2, \operatorname{deg} Z_{4}=2$.
$R(Y)=\bigoplus_{\mathscr{M}=0}^{\infty} H^{\circ}\left(Y, \mathscr{O}\left(m K_{Y}\right)\right)$ is the canonical ring of a smooth projective variety Y.
$h^{i}(Y, L)=\operatorname{dim} H^{i}(Y, L)$, where L is a coherent sheaf on a projective variety Y. $\mathrm{P}=\mathrm{P}(1,1,1,2,2)=\operatorname{Proj}(R)$.
$S_{n}=\left\{\right.$ homogeneous polynomials of degree n in $\left.\mathrm{C}\left[X_{1}, X_{2}\right]\right\}$.
S is a smooth projective surface over C with $K_{S}^{2}=2, p_{g}(S)=1, q(S)=0$ and torsion $\mathbf{Z} / 2 \mathbf{Z}$.
§1. Let B be the base of the Kuranishi family of deformations of S. The tangent space to B at the point 0 corresponding to the surface S is identified in a

[^0]
[^0]: Received October 27, 1983. The author is member of G.N.S.A.G.A. (C.N.R.)

