Vol. 50, No. 1

FONCTIONS HOLOMORPHES BORNÉES ET LIMITES TANGENTIELLES

MONIQUE HAKIM ET NESSIM SIBONY

1. Introduction et notations. Si f est une fonction holomorphe bornée dans le disque unité D de C, le théorème de Fatou classique affirme que f admet presque partout sur D une limite non tangentielle f^* telle qu'on ait

$$||f||_{\infty} = ||f^*||_{\infty}$$

et

$$f(z) = \frac{1}{2\pi i} \int \frac{f^*(\zeta)}{\zeta - z} d\zeta$$

pour tout $z \in D$.

En dimension p > 1, A. Koranyi [3] a étendu ce résultat dans la boule unité B de \mathbb{C}^p , à des domaines d'approche tangentielle qu'il a appelés "domaines admissibles," $D_{\alpha}(\zeta)$ définis pour $\alpha > 1$ et $\zeta \in B$ par

$$D_{\alpha}(\zeta) = \{z \in B; |1 - \langle z, \zeta \rangle| \leq \alpha(1 - |z|)\}$$

(et en fait à une classe plus étendue de fonctions).

Nous nous proposons ici de montrer que ces domaines sont les "meilleurs" possible. Plus précisément, supposons toujours la dimension p > 1, soit $\alpha > 1$ et soit

$$h:]0,1] \rightarrow [\alpha, +\infty[\tag{1})$$

une fonction décroissante positive, telle que

$$\lim_{x\to 0^-} h(x) = +\infty$$

Nous définissons alors pour $\zeta \in \partial B$ des domaines $D_{\alpha,h}(\zeta)$, qui sont plus évasés que les $D_{\alpha}(\zeta)$, mais seulement dans les directions complexes tangentes à ∂B en ζ , par

$$D_{\alpha,h}(\zeta) = \{ z \in B; |1 - \langle z, \zeta \rangle| \le \alpha (1 - |\langle z, \zeta \rangle|)$$

$$\text{et } |1 - \langle z, \zeta \rangle| \le h(|1 - \langle z, \zeta \rangle|)(1 - |z|) \}$$
(2)

Le but de cet article est alors de prouver le résultat suivant.

Received August 2, 1982.