ON THE NUMBER OF CLOSED GEODESICS ON A COMPACT RIEMANNIAN MANIFOLD

WERNER BALLMANN and WOLFGANG ZILLER

A well-known theorem of Gromoll and Meyer [4] states that any Riemannian metric on a compact, simply connected manifold M has infinitely many geometrically different closed geodesics if the Betti numbers of the free loop space of M are not bounded. In [5] Gromov proved a quantitative version of this result under the additional assumption that all closed geodesics of the metric are non-degenerate. This is a generic condition on the metric by the bumpy metric theorem of Abraham [1]. In this note we will improve Gromov's estimate.

Let Λ be the space of piecewise differentiable closed curves $c: \mathrm{R} / \mathrm{Z} \rightarrow M$, endowed with the compact-open topology. For a principal ideal domain R denote by $b_{k}(R)$ the rank of $H_{k}(\Lambda ; R)$.

For a Riemannian metric g on M and $t \geqslant 0$ define $N_{g}(t)$ to be the number of geometrically different closed geodesics of g of length $\leqslant t$. Gromov proved that there exist constants $\alpha=\alpha(g)>0$ and $\beta=\beta(g)>0$ such that $N_{g}(t) \geqslant$ $\alpha\left(\sum_{k<\beta t} b_{k}(R)\right) / t$ for all t sufficiently large. We will prove:

Theorem. Suppose M is compact and simply connected. Let g be a Riemannian metric on M such that all closed geodesics of g are nondegenerate. Then there exist constants $\alpha=\alpha(g)>0$ and $\beta=\beta(g)>0$ such that

$$
N_{g}(t) \geqslant \alpha \max _{k \leqslant \beta t} b_{k}(R)
$$

for any principal ideal domain R and all t sufficiently large.
Proof of the Theorem. Let g be a Riemannian metric on M. The closed geodesics of g and the point curves are the critical points of the energy functional

$$
E: \Lambda \rightarrow \mathrm{R}, \quad E(c)=\frac{1}{2} \int_{0}^{1} g(\dot{c}, \dot{c}) .
$$

Let $L: \Lambda \rightarrow R$ denote the length functional. Applying the Cauchy-Schwarz inequality we get $L^{2}(c) \leqslant 2 E(c)$, where equality holds if and only if c is parametrized proportional to arc-length.

Set $S=\mathbf{R} / \mathbf{Z}=[0,1] /\{0,1\}$. We have an S action on Λ : if $s \in S$ and $c \in \Lambda$, then $s c$ is defined by $s c(t)=c(t+s)$. The orbit of c is denoted by $S c$. If c is not a

[^0]
[^0]: Received April 19, 1982. This work was done under the program of the Sonderforschungsbereich Theoretische Mathematik (SFB 40) at the University of Bonn. The second author was partially supported from a grant by the National Science Foundation.

