PROPER HOLOMORPHIC MAPPINGS FROM STRONGLY PSEUDOCONVEX DOMAINS

ERIC BEDFORD

1. Introduction. Let Ω , $D \subset \mathbb{C}^n$ be open sets. A holomorphic mapping is *proper* if $f^{-1}(K)$ is compact whenever $K \subset D$ is compact. Our result is that when Ω is strongly pseudoconvex and simply connected, a proper mapping f gives rise to a biholomorphic map as follows.

THEOREM. Let $\Omega \subset \mathbb{C}^n$, $n \ge 2$, be a simply connected, strongly pseudoconvex domain with C^2 boundary. If $f: \Omega \to D$ is a proper mapping, and if $f \in C^{\infty}(\overline{\Omega})$, then there is a finite subgroup $\Gamma \subset Aut(\Omega)$ with the properties:

(i) f(g(z)) = f(z) for all $g \in \Gamma$;

(ii) for $z_1, z_2 \in \Omega$ with $f(z_1) = f(z_2)$, there exists $g \in \Gamma$ with $g(z_1) = z_2$.

(iii) if $\eta: \Omega \to \tilde{\Omega} = \Omega/\Gamma$ is the quotient map, and $\tilde{f}: \tilde{\Omega} \to D$ is the mapping induced by f, then \tilde{f} is a biholomorphism, and $\tilde{f}\eta = f$.

Remark 1. The motivation behind the Theorem is that it is "difficult" for a proper mapping not to be biholomorphic. Note that biholomorphic mappings always exist in abundance, e.g., we may let f be a small C^1 perturbation of the identity mapping i(z) = z and $D = f(\Omega)$. On the other hand, if f is smooth but not one-to-one, then the automorphism group of Ω must be nontrivial. But it is known (see Burns, Shnider, and Wells [1]) that a "generic" strongly pseudoconvex domain has no automorphisms except the identity. Thus if Ω is such a domain and $\pi_1(\Omega) = 0$, every proper mapping $f: \Omega \to f(\Omega), f \in C^{\infty}(\overline{\Omega}) \cap \mathfrak{O}(\Omega)$ is biholomorphic.

Remark 2. A number of results in this direction are known already. If $\partial\Omega$ is real analytic, then the existence of the group Γ follows from a result of Pinčuk [3].

Pinčuk [2] also obtains an interesting result in the case where ∂D is smooth. The Theorem above, however, is uninteresting in this case. For if f is not locally biholomorphic, then by the Corollary below, ∂D is not smooth.

In the case where $\Omega = B^n$ is the unit ball in C^n , then the Theorem above was obtained by Rudin [6], who also gives a more detailed study of the possible quotient maps $\eta: B^n \to B^n/\Gamma$ that can arise from a proper mapping.

Remark 3. Without changing the proof, we may assume that $\Omega \subset \subset \hat{\Omega}$ is a smoothly bounded, strongly pseudoconvex domain in a Stein manifold $\hat{\Omega}$ and that $D \subset \subset \hat{D}$, where \hat{D} is any complex manifold.

Received December 16, 1981. Research supported in part by the National Science Foundation.