NONLINEAR MICROLOCAL ANALYSIS OF SEMILINEAR HYPERBOLIC SYSTEMS IN ONE SPACE DIMENSION

JEFFREY RAUCH AND MICHAEL REED

TABLE OF CONTENTS

Introductio	on	7
CHAPTER 1.	HARMONIC ANALYSIS OF $(H^s)^k$ Spaces	
§1.1	Basic properties	1
§1.2	Multiplicative properties	5
§1.3	Local and microlocal spaces	27
§1.4	Invariance under nonlinear maps	32
CHAPTER 2.	REGULARITY OF SOLUTIONS OF SEMILINEAR HYPERBOLIC	
	EQUATIONS	
§2.1	Regularity valid everywhere	13
§2.2	The basic propagation theorem	15
§2.3	The general regularity theorem: formulation and examples 44	18
§2.4	The general regularity theorem: proof	6
§2. 5	Resolving the solid cones	54
REFERENCES		15

Introduction. This paper is devoted to the study of the singularities of solutions to semilinear strictly hyperbolic systems in one space variable, that is, systems of the form

$$A_0(x,t)\frac{\partial u}{\partial t} + A_1(x,t)\frac{\partial u}{\partial x} = f(x,t,u)$$

where $(x,t) \in \mathbb{R} \times \overline{\mathbb{R}}_+$, $u(x,t) \in \mathbb{C}^m$, the A_i are smooth $m \times m$ matrix-valued functions, and $f: \mathbb{R} \times \overline{\mathbb{R}}_+ \times \mathbb{C}^m \to \mathbb{C}^m$ is smooth. If the system is strictly hyperbolic, then $\det A_0 \neq 0$ and $\det (\tau A_0 + \xi A_1)$ has m distinct real roots for all (x,t) and $\xi \neq 0$. By a smooth change of dependent variables, the system can be recast in the form

$$\left(\frac{\partial}{\partial t} + \lambda_j(x, t) \frac{\partial}{\partial x}\right) u_j = f_j(x, t, u) \qquad j = 1, \dots, m$$
 (1)

Received January 20, 1982. Research of first author partially supported by NSF Grant #MCS-79-01857. Research of second author partially supported by NSF Grant #MCS-78-02179.