BOUNDARY REGULARITY OF PROPER HOLOMORPHIC MAPPINGS

STEVEN BELL and DAVID CATLIN

1. Introduction. A smooth bounded domain D contained in C^{n} is said to satisfy condition R if the Bergman projection associated to D maps $C^{\infty}(\bar{D})$ into $C^{\infty}(\bar{D})$. The purpose of this paper is to prove
Theorem 1. If $f: D_{1} \rightarrow D_{2}$ is a proper holomorphic mapping between smooth bounded pseudoconvex domains contained in C^{n}, and if D_{1} satisfies condition R, then f extends smoothly to \bar{D}_{1}.

Theorem 1 was proved in the special case that the mapping f is biholomorphic in [3]. Allowing the mapping to be proper creates obstacles which do not seem to be surmountable using the machinery of [3]. Hence, we are forced to develop new techniques to study boundary behavior of proper mappings. K. Diederich and J. E. Fornaess have announced that they have also obtained a proof of theorem 1.

Kohn's formula $P=I-\bar{\partial} * N \bar{\partial}$ relates the Bergman projection P to the $\bar{\partial}$-Neumann operator N. Hence, whenever the $\bar{\partial}$-Neumann operator associated to a domain satisfies global regularity estimates, that domain satisfies condition R. J. J. Kohn has shown $[16,17,18]$ that the $\bar{\partial}$-Neumann operator satisfies stronger estimates than global regularity estimates in a variety of cases. For example, the $\bar{\partial}$-Neumann operator associated to a smooth bounded domain D satisfies subelliptic estimates whenever D is strictly pseudoconvex [16], or D is pseudoconvex and of finite type in C^{2} [17], or, more generally, whenever the boundary of D satisfies certain geometric conditions [18]. Diederich and Fornaess [9] have shown that these geometric conditions are satisfied by smooth bounded pseudoconvex domains with real analytic boundaries. Condition R can also be shown to hold for smooth bounded complete Reinhardt domains [6].

It is proved in [4] that if $f: D_{1} \rightarrow D_{2}$ satisfies the hypotheses of theorem 1 , then $u=\operatorname{Det}\left[f^{\prime}\right]$ extends smoothly to \bar{D}_{1} and $u f^{\alpha}$ extends smoothly to \bar{D}_{1} for each multi-index α. We shall take this as our starting point. Note that if u and $u f^{\alpha}$ extend holomorphically past $b D_{1}$ for each α, then the solution of a simple division problem in the ring of germs of holomorphic functions renders that f also extends holomorphically past $b D_{1}$. This procedure is described in detail in [5]. We intend to mimic this procedure in the $C^{\infty}\left(\bar{D}_{1}\right)$ category. Additional complications arise because the ring of germs of C^{∞} functions does not form a unique factorization domain, as does the ring of germs of holomorphic functions. However, we shall be considering germs of C^{∞} functions which are holomorphic on one side of a real hypersurface, and this ring does retain certain weak factorization properties.

