EXAMPLES OF SINGULAR PARABOLIC MEASURES AND SINGULAR TRANSITION PROBABILITY DENSITIES

EUGENE B. FABES and CARLOS E. KENIG

We consider strongly parabolic operators

$$
L=\sum_{i, j=1}^{n} a_{i j}(t, x) D_{x_{i} x_{j}}^{2}-D_{t},
$$

i.e., we assume there exists $\lambda>0$ such that for each $t>0, x \in R^{n}, \xi \in R^{n}$, $a_{i j}(t, x)=a_{j i}(t, x)$ and

$$
\lambda|\xi|^{2} \leqslant \sum_{i, j=1}^{n} a_{i j}(t, x) \xi_{i} \xi_{j} \leqslant \frac{1}{\lambda}|\xi|^{2}
$$

If in addition, the coefficients are uniformly continuous then the classical Cauchy or initial value problem,

$$
\begin{aligned}
L u & =0, t>0 \\
u(0, x) & =g(x)
\end{aligned}
$$

is uniquely solvable for continuous g with compact support in R^{n}. The solution $u(t, x)$, satisfies the condition

$$
\begin{equation*}
\sum_{|\alpha| \leqslant 2} \int_{a}^{b} \int_{R^{n}}\left[\left|D_{x}^{\alpha} u\right|^{p}+\left|D_{t} u\right|^{p}\right] d x d t<\infty \tag{i}
\end{equation*}
$$

for each $0<a<b<\infty$ and each $1<p<\infty$. In particular u is continuous in $R_{+}^{n+1}=(0, \infty) \times R^{n}$, uniformly continuous in $[a, b] \times R^{n}$, for each $0<a<b$ $<\infty$ and in addition satisfies

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \sup _{x}|u(t, x)-g(x)|=0 . \tag{ii}
\end{equation*}
$$

The maximum principle implies that the mapping

$$
g \rightarrow u(t, x)
$$

is a positive continuous linear functional on $C_{0}\left(R^{n}\right)$, the space of continuous functions with compact support. Hence there exists a locally finite (actually finite

Received July 17, 1981. Both authors were supported in part by NSF.

